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1. Introduction 

In traditional economic models, agents are rational and would not take into account sunk costs 

when making decisions because sunk costs have already been incurred and cannot be reversed. 

However, several empirical and experimental studies have noted that sunk costs do affect 

decisions by individuals and firms, which is referred to as the “sunk cost fallacy.” These studies 

found that the sunk cost fallacy causes individuals or firms to make decisions that are not the 

first best for themselves, including Ho et al. (2018) on automobile purchases, Just and Wansink 

(2011) on restaurant consumption, Augenblick (2016) on auction bidding, Agarwal et al. (2015) 

on strategic defaults by mortgage borrowers, and Buchheit and Feltovich (2011) on price setting 

by duopolists.  

In contrast, we examine the automobile insurance market and find that the sunk cost fallacy 

not only can cause individuals to make nonoptimal decisions for themselves but also can 

exacerbate the moral hazard problem. It can cause more property losses, bodily injuries, and 

even deaths, not only to the policyholders but also to other people, and it can incur more 

monetary losses to insurance companies. Using proprietary data from an automobile insurance 

company in China, we find that policyholders are more likely to encounter accidents during the 

last month before their one-year insurance contracts expire than at other times. This phenomenon 

is not due to the calendar-month effects because different policy contracts can start in different 

calendar months. 

In China’s automobile insurance market, the term of a policy contract is one year, which is 

a mandatory requirement by the regulator. Policyholders need to pay the premium at the 

beginning of the term; and then they need to pay another premium to renew the contract at the 
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end of the current term if they would like to continue to drive the car. Regardless of whether the 

policyholder encounters an accident during the contract term, the premium paid at the beginning 

of the term cannot be refunded. Therefore, the premium paid at the beginning is a sunk cost that 

should not affect the policyholder’s loss-prevention effort or moral hazard during the contract 

term if the policyholder is completely rational.  

However, we find that policyholders for individual-owned vehicles are more likely to 

encounter accidents during the last month before the one-year insurance contracts expire than at 

other times. The explanation is that, due to the sunk cost fallacy, as the contract approaches the 

expiration date, policyholders may become concerned that they may “waste” the premium paid at 

the beginning of the policy term if they have not encountered an accident before the policy 

expires, and thus they will reduce their efforts to prevent accidents or mitigate accident hazards.  

We also find that the last-month effect does not exist for vehicles owned by companies or 

governments. The reason is that the premiums for these vehicles are not paid by the drivers but 

by the companies or governments in which the drivers work. These drivers should not be 

susceptible to the sunk cost fallacy because, if encounter an accident, they actually “get the 

premium money’s worth” for their employers rather than for themselves. 

A rational individual policyholder without the sunk cost fallacy should not exert less 

loss-prevention or hazard-mitigation effort in the last month than in other months of a policy 

term. For policyholders, the benefits of reducing their loss-prevention or hazard-mitigation 

efforts include the time saved by driving at a higher speed, the gains from driving more miles or 

making more trips per day, the convenience of investing fewer efforts to avoid riskier routes or 

riskier activities (e.g., driving at night or chatting on cellphones or with other passengers), the 

novelty of driving on new (unfamiliar) routes, the relaxation of paying less attention while 
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driving, and the enjoyment of “cool” but risky driving habits (e.g., rapid acceleration, hard 

braking, hard cornering, and rapid lane changes). The costs for policyholders to reduce their 

efforts are increases in the probability of an accident.2 However, neither the benefits nor the 

costs of reducing the loss-prevention or hazard-mitigation efforts vary across different months 

within the policy term; thus, different months within the policy term should not differently affect 

policyholders’ decisions to reduce the efforts if they are completely rational. 

The phenomenon can also be explained within the framework of the mental accounting 

theory developed by Thaler (1985). In that theory, consumers take into account both acquisition 

utility and transaction utility when they make purchasing decisions: acquisition utility “depends 

on the value of the good,” while transaction utility “depends solely on the perceived merits of the 

deal.” In the policyholder’s problem, because the total payment that the policyholder receives 

from the insurance company compared to the premium that she/he paid upfront may affect 

her/his perception of whether she/he received a good deal when purchasing the policy, of the 

fairness of the premium the company charged her/him, or of whether she/he “got the premium’s 

worth,” the policyholder may place the payment received from the insurance company into a 

different mental account from her/his out-of-pocket loss caused by accidents and use the sunk 

premium as a reference point. 

We also demonstrate that the elevated accident risk in the last month is not fully driven by 

                                                              
2 In the automobile insurance literature, Geyer et al. (2020) documented that the overall distance driven, 

the number of trips, and the average speed can increase the accident risk. Fan and Wang (2017) 

documented that rapid acceleration, hard braking, hard cornering, rapid lane changes, and when and 

where the vehicle is driven have significant influences on accident risk. Jin et al. (2018) found that drivers’ 

route familiarity can reduce their accident risk. 
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the fraudulent-claims channel, selective reporting, selectivity caused by early termination, and 

measurement errors. 

One may ask why policyholders would drive more dangerously to somehow recoup their 

sunk premiums. First, if policyholders only drive farther distances, make more trips, or drive 

more on new routes in the last month of the policy term, they may not think that they are driving 

more dangerously, but in fact, their daily accident probability is increased.  

Second, if policyholders perform more frequent rapid acceleration or rapid lane changes in 

the last month, they may know that they are driving more dangerously, but the accident 

probability is still very small, and thus its increase is not salient to them (although the loss given 

an accident can be enormous). Irrational policyholders who are prone to taking chances may 

underestimate the increases in the expected losses. However, as the policies approach the 

expiration dates, the sunk premiums become salient to policyholders who have the sunk cost 

fallacy because they will obtain disutility from having “wasted” the premium if no accident 

occurs. Many experimental studies in economics and finance have suggested that people are 

relatively insensitive to a small change in the probability of an event when the probability is 

close to zero, whereas people are relatively sensitive to a small change in the probability of an 

event when the probability is close to one (e.g., the Allais Paradox in Allais, 1953).3 In the last 

month, the probability of incurring loss by an accident to the mental account of acquisition utility 

is still close to zero, whereas the probability of “wasting the premium” in the mental account of 

transaction utility is sufficiently close to one if no accident has occurred. 

Insurance coverage can cause rational drivers to reduce their efforts to prevent losses, 

which is a well-known textbook example of moral hazard. The mechanisms adopted by auto 

                                                              
3 Also see Figure 4 in Kahneman and Tversky (1979). 
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insurance companies to mitigate moral hazard include deductibles and penalties that raise future 

premiums after accidents. However, if the sunk cost fallacy exists, the actual moral hazard will 

be higher than what is estimated based on rational agent models. As a result, the optimal amount 

of deductibles and penalties needed to mitigate moral hazard can also be underestimated. While 

in the traditional literature, moral hazard is generated by rational agents (Holmstrom, 1979; 

Shavell, 1979; Rubinstein and Yaari, 1983), our study shows that moral hazard can be 

exacerbated by the sunk cost fallacy held by irrational agents.   

In the health insurance literature, Baicker et al. (2015) proposed a concept of behavioral 

hazard as compared to moral hazard. In their theoretical model, in patients’ decision rules 

comparing costs and benefits, there is an error term � representing patients’ misperception of 

costs and benefits, which may lead to incorrect decisions. Starc and Town (2016) provided 

empirical evidence on patients’ behavioral hazard and insurers’ efforts in altering insurance 

designs to mitigate the behavioral hazard. In contrast, the behavioral bias in our study lies in 

drivers’ objective function with a mental account that suffers from the sunk cost fallacy. 

Based on our estimates, 2-3% of accidents of individual policyholders can be attributed to 

the sunk cost fallacy. The resulting losses can be tremendous because the automobile insurance 

industry is enormous. According to the China Banking and Insurance Regulatory Commission, 

during 2018, 448 million automobile insurance policies were sold with a total revenue of RMB 

783.4 billion, and RMB 440.3 billion were paid by insurance companies as settlement proceeds. 

Moreover, the market size is rapidly growing because car ownership is rapidly increasing every 

year in China (by 8.83% in 2019).    

The loss caused by the sunk cost fallacy is borne by three parties. First, insurance 

companies need to pay more money for settlements. Second, for policyholders, while reducing 
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loss-prevention efforts cannot reverse a premium that has already been paid, it will increase the 

probability of accidents with property losses and bodily injuries that cannot be fully compensated 

by insurance proceeds. Third, these undue accidents can cause the other party in the collision 

property losses and bodily injuries that cannot be fully compensated by insurance proceeds.    

The results provide two important implications to mitigate the losses caused by the sunk 

cost fallacy: one for policyholders and the other for insurance companies. First, policyholders 

should consciously make more loss-prevention or hazard-mitigation efforts in the last month of 

the policy term because the sunk cost fallacy can cause them to make fewer efforts in that month, 

which is not a rational decision. Education to improve awareness of the sunk cost fallacy could 

be helpful. Second, insurance companies could redesign policy contracts to mitigate the 

additional moral hazard in the last month due to policyholders’ sunk cost fallacy, such as 

increasing the deductible or decreasing the per-accident coverage limit for accidents that occur in 

the last month of a policy term.  

Our study mainly contributes to three strands of the literature. The first strand is the 

literature on the sunk cost fallacy. Previous research used industrial data, field experiments, or 

lab experiments to demonstrate the sunk cost fallacy in consumers’ or firms’ decision-making 

processes under different scenarios, including automobile purchases (Ho et al., 2018), restaurant 

consumption (Just and Wansink, 2011), price setting by firms (Buchheit and Feltovich, 2011; 

Al-Najjar et al., 2008; Shi et al., 2020), auction bidding (Augenblick, 2016), strategic defaults by 

mortgage borrowers (Agarwal et al., 2015), and computer game playing (Friedman et al., 2007). 

In those scenarios, the sunk cost fallacy causes consumers or firms to make nonoptimal decisions 

that are inconsistent with the predictions of rational agent models.4 Different from those studies, 

                                                              
4 On the other hand, Baliga and Ely (2011) built a model with limited memory to rationalize the sunk cost 
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our study provides evidence that, in addition to causing agents to make nonoptimal decisions for 

themselves, the sunk cost fallacy can exacerbate moral hazard and thereby cause direct losses to 

other parties. 

The second strand of the literature to which we contribute is the literature on moral hazard. 

Multiple papers have developed different empirical strategies to identify moral hazard in the auto 

insurance markets (see Weisburd, 2015; Dionne et al., 2013; Abbring et al., 2003).5 6 Other 

papers analyzed the effects of state legislation or public policies on mitigating moral hazard in 

the auto insurance markets (see Dionne et al., 2011; Hoyt et al., 2006; Cohen and Dehejia, 2004). 

While in the context of those studies, moral hazard is generated by rational agents, our study 

shows that moral hazard can be exacerbated by the sunk cost fallacy held by irrational agents.    

Third, we contribute to the literature on behavioral bias in insurance-related industries and 

automobile-related industries. Because the automobile manufacturing industry, the 

ride-providing industry, the auto insurance industry, and other insurance industries have 

enormous volumes each year, the behavioral bias in these industries has dramatic impacts.  

Behavioral bias in the health insurance industry has been intensively studied. Baicker et al. 

(2015) built a theoretical model for patients’ behavioral hazard as compared to moral hazard, and 

Starc and Town (2016) provided the empirical evidence. Abaluck et al. (2018) and Dalton et al. 

(2020) provided empirical evidence on patients’ myopic spending behavior under Medicare Part 

                                                                                                                                                                                                       
fallacy. 

5 Another group of papers studied moral hazard problems in other automobile-related industries, such as 

Schneider (2010) on the car-leasing market and Dunham (2003) on the market for used cars. 

6 Another line of the literature studied adverse selection in the auto insurance markets, including 

Chiappori and Salanie (2000), Puelz and Snow (1994), Cohen (2005), and Dionne et al. (2001). 
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D. Chang et al. (2018) studied the effect of daily air pollution levels on the demand for long-term 

health insurance. Sandroni and Squintani (2007) theoretically analyzed the overconfidence of 

policyholders about their risk levels and the corresponding behavioral rationale of compulsory 

insurance for a general insurance market.  

Behavioral bias in other automobile-related industries has also been studied, but few 

studies have been conducted on behavioral bias in the automobile insurance industry. Gao et al. 

(2020) studied policyholders’ reference-dependence in exaggerating the reported damage given 

that an accident occurs. Shum and Xin (2020) studied time-varying risk preferences among 

automobile drivers and found that drivers drive more conservatively following “near-miss” 

accidents (measured by hard brakes or hard turns). Busse et al. (2015) studied the psychological 

effect of weather on car purchases. Ho et al. (2017) studied the effect of the color yellow on taxi 

accident rates. 

The remainder of this paper is organized as follows. In Section 2, we describe the data. In 

Section 3, we build a theoretical model. Sections 4.1 through 4.3 discuss the baseline empirical 

results. In Section 4.4, we provide evidence for the reducing-effort channel of the sunk cost 

fallacy effect, given the potential existence of the insurance-fraud channel. Section 4.5 discusses 

concerns about selective reporting. Section 4.6 discusses accident severity. In Section 4.7, we 

conduct a regression discontinuity (RD) design. Sections 5.1 through 5.3 address some concerns 

regarding the empirical results. In Section 5.4, we provide evidence that the elevated accident 

risk in the last month cannot be fully explained by rational behavior. In Section 5.5, we employ 

the salience theory to explain why the elevation in risk only appears in the last month of a policy 

term. In Section 6, we quantify the proportion of accidents that can be attributed to the sunk cost 

fallacy. Section 7 discusses the policy implications. Then, we conclude in Section 8. 
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2. Data 

The data come from an auto insurance company in China. The data cover approximately 670,000 

policies sold during 2010-2017 in nine major cities. The policy information in the data includes 

the starting and ending dates, the characteristics of the automobile (e.g., number of seats, 

manufacturer, model, and manufacture year), the characteristics of the policyholder (e.g., gender, 

age, and individual owner vs. company or government owner), and the characteristics of the 

policy contract (e.g., premium and coverage). The settlement information includes the accident 

date, the type of accident, the report date, the settlement date, and the settlement proceeds paid 

by the insurance company.  

For each policy, the dataset provides the policyholder’s previous accident history, which is 

classified into the following categories: no accident in the previous three or more years, no 

accident in the previous two years, no accident in the previous year, one accident in the previous 

year, two accidents in the previous year, three or more accidents in the previous year, and new 

driver. 

After we delete policies with early termination and policies that miss essential information 

(such as whether the policyholder is an individual, company, or governmental organization), 

630983 policies remain. Table 1 reports the descriptive statistics. The histogram of the number of 

policy cycles for each driver in the data is displayed in Figure C.1 in the online Supplemental 

Appendix. 

[Insert Table 1 here] 

Panel A of Figure 1 displays the accident counts in the data for each month within the 

one-year policy cycle. There is a spike in the last month of the cycle. It can also be seen that 
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accident counts in the first two months are also abnormally high, which is mainly driven by new 

drivers (first-year drivers). New drivers have higher risk in the first two or three months and an 

additional month of driving experience is much helpful for them to reduce the risk. Panels B and 

C of Figure 1 display accident counts for new drivers and experienced drivers (with more than 

one year of driving experience), respectively. Figure 2 displays the accident counts for each 

month within the first two policy cycles for drivers that were served by the insurance company 

for at least two policy cycles. There is a spike in the last month of each policy cycle (the 12th and 

24th months). 

[Insert Figure 1 here] 

[Insert Figure 2 here] 

 

3. Theoretical model 

In this section, we build a theoretical model in which a policy contract term has only two days. 

Although in reality, a policy contract term has 365 days, a simple model with a two-day contract 

is sufficient to show the following patterns: 1. a policyholder with the sunk cost fallacy exerts 

lower loss-prevention effort than a policyholder without the sunk cost fallacy; and 2. for a 

policyholder with the sunk cost fallacy, if no accident occurs on day 1, she/he will exert even 

lower effort on day 2 than on day 1.  

Denote the premium of the policy as ����. On each day, a policyholder can either have 

no accident or encounter one accident. The probability of encountering an accident on a day is 

�(�), where � is the effort or caution that the policyholder expends on the day to prevent an 

accident. Assume that �′(�) < 0 and ���(�) > 0, i.e., the effort will reduce the probability of 

an accident and the marginal effect of effort is diminishing. The effort level � on a day is 
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determined by the policyholder at the beginning of the day; whether an accident occurs or not 

will be realized at the end of the day. 

Conditional on an accident occurring, the severity level of the accident, �, is a random 

variable following the probability density function �(�) defined on the support (0, �̅]. The 

higher � is, the greater the damage or loss caused by the accident. Accordingly, the payment 

from the insurance company to the policyholder, �(�), is a function of �; �(�) > 0 and 

��(�) ≥ 0 on the support (0, �̅].7 Meanwhile, the out-of-pocket loss to the policyholder (after 

the payment from the insurance company), �(�), is also a function of �; �(�) > 0 and 

�′(�) ≥ 0 on the support (0, �̅]. �(�) may include not only the accident loss that is not 

covered by the insurance but also the present value of increases in future premiums caused by the 

current accident. 

If a policyholder does not have the sunk cost fallacy, on day � (� = 1, 2), she/he will choose the 

effort level �� to maximize the expected utility on that day as follows: 

  

(3.1) max
��

 ���(��) = −�� − �(��) � �(�)�(�)��
�̅

�

,           � = 1, 2.  

 

In equation (3.1), the first term on the right-hand side is the disutility from exerting effort, and 

the second term is the expected out-of-pocket loss. Denote the solution to the problem in (3.1) as 

�� = �� = �̂. 

                                                              
7 We assume that �(�) > 0 on the support (0, �̅] for simplicity. In reality, if there is a deductible, for a 

small �, �(�) could be zero. However, the results of the model are extendible to the situation in which 

there is a deductible. 
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If a policyholder has the sunk cost fallacy, on day 2, given that the payment she/he 

received from the insurance company on day 1 is equal to ��, she/he will solve the following 

utility-maximizing problem w.r.t. the effort level ��: 

 

(3.2) 

��(��) = max
��

��(��|��) = −�� − �(��) � �(�)�(�)��
�̅

�

− �(��)� � max{���� − �� − �(�), 0} �(�)��
�̅

�

− [1 − �(��)]� max{���� − ��, 0}. 

 

The third and fourth terms on the right-hand side in equation (3.2) indicate that the 

policyholder would obtain disutility if the total payment received from the insurance company 

during the entire policy term is less than the premium. If an accident occurs on day 2, the 

policyholder will obtain disutility � max{���� − �� − �(�), 0}, where �(�) is the payment 

received from the insurance company on day 2 and � is a realization of the severity level of the 

accident on day 2; if no accident occurs on day 2, the policyholder will obtain disutility 

� max{���� − ��, 0}. �>0. Although the premium is a sunk cost, it enters the policyholder’s 

utility function and works as a reference point. The policyholder not only cares about the 

loss-prevention effort and the out-of-pocket loss in an accident, but also cares about whether 

she/he can finally “get the premium money’s worth.”  

The first two terms and last two terms on the right-hand side of equation (3.2) are similar 

to the concepts of acquisition utility and transaction utility, respectively, in the mental accounting 

theory developed by Thaler (1985). In that theory, acquisition utility “depends on the value of the 

good received,” while transaction utility “depends solely on the perceived merits of the deal”; 
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and consumers take into account both acquisition utility and transaction utility when they make 

purchasing decisions. In the driver’s problem, the total payment that she/he receives from the 

insurance company during the entire policy term compared to the premium that she/he paid 

upfront can affect her/his perception of whether she/he received a good deal when purchasing the 

insurance, of the fairness of the premium the company charged her/him, or of whether she/he 

“got the premium’s worth.” � in equation (3.2) measures the importance of one dollar obtained 

in a driver’s transaction utility account relative to one dollar obtained in her/his acquisition utility 

account. � can also be interpreted as the extent to which the driver is affected by the sunk cost 

fallacy. 

Denote the optimal solution of the effort level to the problem in (3.2) given �� as ��
∗(��), 

which is a function of ��. ��(��) in (3.2) is the indirect utility function, which is also a 

function of ��. On day 1, the policyholder will choose the effort level on day 1 to maximize the 

total expected utility on day 1 and day 2: 

 

(3.3) 
max

��

��(��) = −�� − �(��) � �(�)�(�)��
�̅

�

+ �(��) � ����(�)��(�)��
�̅

�

+ [1 − �(��)]��(0). 

 

The first two terms and last two terms on the right-hand side of equation (3.3) are the expected 

utilities the policyholder can obtain on day 1 and day 2, respectively, given her/his effort on day 

1. Denote the optimal solution to (3.3) as ��
∗.  

We have the following two propositions. 

Proposition 1: ��
∗<�̂ and ��

∗(��) ≤ �̂, i.e., the loss-prevention effort on day 1 and day 2 

when the sunk cost fallacy exists is lower than the effort on day 1 and day 2, respectively, when 
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the sunk cost fallacy does not exist. 

Proposition 2: ��
∗>��

∗(0), i.e., if no accident occurs on day 1, a policyholder with the sunk 

cost fallacy will reduce her/his loss-prevention effort on day 2 compared to her/his effort on day 

1. 

The intuition of Proposition 2 is that, on day 1, the policyholder has a two-day opportunity 

to “get the premium money’s worth,” whereas on day 2, if no accident occurred on day 1, the 

policyholder only has a one-day opportunity to “get the premium money’s worth.” Therefore, the 

driver does not need to reduce her/his loss-prevention effort on day 1 as much as on day 2. 

We prove Propositions 1 and 2 in Appendix A.1. 

 

4. Main empirical results 

4.1. Baseline results 

We estimate policyholder-day-level linear probability models as displayed in equation (4.1). The 

dependent variable ��,� = 1 (rescaled to 10,000 basis points (bps)) if policyholder � had an 

accident on day �; ��,� = 0 otherwise. ��(�) is a 0-1 dummy variable indicating whether day 

� is in the �th month of the policy term. ��,� is a rich set of control variables, including the 

vehicle-driver fixed effect, the calendar-year-month fixed effect, the vehicle owner type 

(individual owner vs. company or government owner), and the driver’s accident history and 
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months of driving experience.8 ��,�  is the error term. We exclude the policies with early 

termination from the sample. We also exclude the policies that had not expired by the end of our 

sampling period. 

 

(4.1) ��,� = � ����(�)

��

���

+ ���,� + ��,�. 

 

When estimating ��, � = 1,2, … ,12, we choose the last month of the contract term to be 

the omitted month, i.e., we set ��� = 0; therefore, it is easy to see how different the last month 

is from any of the other months and whether the difference is statistically significant. The 

standard errors are clustered by vehicle-driver. 

Column 1 of Table 2 displays the results of the pooled regression. After controlling for 

other factors, the accident probability on a day in the last month of the policy term is higher than 

that in any of the other months at a significance level of 0.1%. Overall, the daily accident 

probability for a policyholder in the last month is higher than those in other months by 2 to 4 bps, 

which is a considerable magnitude relative to the average daily accident probability over the 

                                                              
8 We do not directly observe policyholders’ months of driving experience; thus, we use the months since 

the start of their first contract with this insurance company as the proxy. Their true months of driving 

experience should equal the sum of months of driving before their first contract with this insurance 

company and months since the start of their first contract with this insurance company. The unobserved 

former part is controlled for by the vehicle-driver fixed effect. The proxy is equal to the true months of 

driving experience for the policyholders of whom the accident history for their first policies with this 

insurance company is “new driver.” We also restrict the sample to these policyholders and obtain similar 

results. The results are available upon request. 
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entire policy term (7.51 bps). According to the data, for new drivers, 12 months of driving 

experience could reduce their daily accident probability by 3.31 bps (0.2755×12, see column 3 

of Table C.1 in the online Supplemental Appendix);9 the daily accident probability of drivers 

who had one accident in the last year is 4.43 bps higher than that of drivers with no accidents in 

the last three years or longer (11.5609-7.1352, see column 1 of Table 8 in Section 5.3).10 

Therefore, the magnitude of the sunk cost fallacy effect is also considerable relative to other 

effects on accident hazard. 

[Insert Table 2 here] 

The first diagram of Figure 3 plots the estimates of ��, � = 1,2, … ,12, in column 1 of 

Table 2. There is a sharp jump in the last month of the policy term. We also run a second 

regression,  

                                                              
9 To control for the different nonlinear trends in the effects of additional months of driving experience on 

new drivers (first-year drivers) and on experienced drivers (with more than one year of driving experience) 

suggested by Figure 1 based on raw data, in Tables 2 and 3, we use fifth-degree polynomials for the two 

groups of drivers, respectively. In the online Appendix, Tables C.1 and C.2 are other versions of Tables 2 

and 3 in which only linear terms of driving experience are controlled for. They clearly show that 

additional months of driving experience are helpful for new drivers in reducing the risk but are not helpful 

for experienced drivers. The coefficients for experienced drivers could even be positive at a 5% level of 

statistical significance, while very small in magnitude. 

10 In Table 8, we analyze how drivers’ risks in the current policy cycle are correlated with their past 

accident histories without controlling for driver-vehicle fixed effects. If we add driver-vehicle fixed 

effects, then the variation in accident histories is within a driver, and there is no empirical pattern that, 

within a driver, a worse accident history will lead to higher accident probabilities in the current policy 

term. 
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(4.2) ��,� = � ����(�)

��

���

+ ���,� + ��,�, 

 

replacing the month effects �� in equation (4.1) with the week effects ��, which are plotted in 

the second diagram of Figure 3. A third regression is 

 

(4.3) ��,� = � ����(�)

���

���

+ ���,� + ��,�, 

 

replacing the month effects �� in equation (4.1) with the day effects ��, which are plotted in 

the third diagram of Figure 3. In equation (4.2), we choose the last week of a policy cycle as the 

omitted week, i.e., set ��� = 0; in equation (4.3), we choose the last day of a policy cycle as the 

omitted day, i.e., set ���� = 0. The two diagrams show that, after controlling for other factors, 

the accident intensities start to increase slowly but abnormally around the tenth or the eleventh 

month of a policy term and start to increase rapidly at approximately the beginning of the last 

month of a policy term. 

[Insert Figure 3 here] 

 

4.2. Individual-owned vs. company-/government-owned vehicles 

Column 2 of Table 2 displays the regression results for vehicles owned by companies or 

governments. In this subsample, the accident probabilities are determined by the drivers’ 

loss-prevention efforts, but the premiums are paid by the companies or governments in which the 

drivers work rather than by the drivers themselves. These drivers should not be susceptible to the 

sunk cost fallacy because, if encounter an accident, they actually “get back” the sunk premium 

for their employers rather than for themselves. As shown in column 2, the accident probability on 
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a day in the last month of the policy term is not significantly higher than that on a day in the 

previous months.  

In contrast, column 3 of Table 2 displays the regression results for vehicles owned by 

individuals. In this subsample, the premiums are paid by the drivers themselves; therefore, they 

are susceptible to the sunk cost fallacy. As shown in column 3, the accident probability on a day 

in the last month of the policy term is significantly higher than that in other months. 

Figure 4 displays the month effects in equation (4.1), the week effects in equation (4.2), 

and the day effects in equation (4.3) separately for government- or company-owned vehicles and 

individual-owned vehicles. The effect of the sunk cost fallacy exists for the latter group but not 

for the former group.  

[Insert Figure 4 here] 

The elevation of accident intensities in the last month of the policy cycle should not be 

driven by the calendar month effect because, although each policy has a one-year term, it can 

start in any calendar month. Figure C.2 in the online Appendix displays the distribution of 

policies with different starting calendar months. There are some variations across different 

calendar months, but they are within the normal range. In equation (4.1), since we already 

control for the vehicle-driver fixed effect, we do not need to control for the fixed effect for the 

calendar month in which the policy starts. We also divide the policies purchased by individual 

vehicle owners into 12 groups by the calendar month in which the policy starts and run the 

regression separately for each group. The results are robust and are reported in Table C.7 in the 

online Appendix.   

 

4.3. Exogenous accidents 
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In column 4 of Table 2, we restrict the focus to exogenous accidents, including natural disasters, 

explosions, fires, and thefts. Drivers’ accident-prevention efforts cannot influence the occurrence 

of these exogenous accidents, and thus the probability of such accidents should not be elevated in 

the last month by the sunk cost fallacy. The sample includes individual policyholders with 

coverage for these exogenous accidents. The dependent variable ��,� = 1 (rescaled to 10,000 

bps) if policyholder � had an exogenous accident on day �; ��,� = 0 otherwise. As shown in 

column 4 of Table 2, the daily probability of an exogenous accident in the last month of the 

policy term is not significantly higher than that in other months.  

In column 5 of Table 2, the sample is the same as in column 4, but the dependent variable 

��,� = 1 (rescaled to 10,000 bps) if policyholder � had a non-exogenous accident on day � and 

��,� = 0 otherwise. The results indicate that the daily probability of a non-exogenous accident is 

significantly higher in the last month than in other months, which is different from the pattern for 

exogenous accidents. 

 

4.4. Less loss-prevention effort vs. more insurance fraud 

The phenomenon of the elevated accident risk in the last month of a policy term can be explained 

by the sunk cost fallacy. As the contract approaches the expiration date, policyholders could start 

to be concerned that they may “waste” the premium paid at the beginning of the policy term if 

they have not encountered an accident before the policy expires, and thus they will reduce their 

efforts to prevent accidents. A rational policyholder without the sunk cost fallacy should not 

expend less effort in the last month than in other months of a policy term. The reason is that 

neither the benefits nor the costs of reducing loss-prevention or hazard-mitigation effort vary 

across different months within the policy contract term. 
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However, the elevated risk in the last month of a policy term can also be driven by more 

fraudulent claims. Policyholders might attempt to replace some auto parts damaged previously 

with new parts for free or at lower costs by fraudulently reporting an accident. In this subsection, 

we provide empirical evidence for the existence of the reducing-effort channel for the sunk cost 

fallacy effect, given the potential existence of the insurance-fraud channel.   

We restrict the focus to accidents that involve collisions. Collisions have records in police 

offices, and proof from accident scenes and police reports are required to claim benefits from 

insurance companies. Therefore, it is difficult for policyholders to fraudulently report a collision 

to replace auto parts. Furthermore, policyholders would not make a real collision in order to 

replace auto parts because both the cost and the risk are too high. First, collisions may cause 

damages not only to the policyholders but also to the other party involved in the collisions. 

Second, policyholders may incur more damages than they wish to their vehicles because the 

level of damages is difficult to control in a collision; and some auto parts that can be damaged in 

a collision are, in fact, not replaceable. In column 1 of Table 3, the dependent variable ��,� = 1 

(rescaled to 10,000 bps) if policyholder � had an accident that involved a collision on day �; 

��,� = 0 otherwise. The sample includes only policies for individual-owned vehicles. The daily 

probability of an accident involving collisions in the last month of the policy term remains 

significantly higher than that in other months. 

[Insert Table 3 here] 

We further restrict the focus to accidents with bodily injuries. In this case, in addition to 

proof from the accident scenes and police reports, hospital documentation is required to claim 

benefits from insurance companies. Therefore, it is even more difficult for policyholders to 

fraudulently report an accident with bodily injuries to earn insurance proceeds. Policyholders 
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would not make a real accident that is sufficiently severe to cause bodily injuries in order to 

replace auto parts because both the cost and the risk are extremely high. In column 2 of Table 3, 

the dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder � had an accident with 

bodily injuries on day �; ��,� = 0 otherwise. The daily probability of an accident with bodily 

injuries in the last month of the policy term remains significantly higher than that in other 

months. The reason why the magnitude of the estimated monthly effects in this regression is 

much smaller than that in the regression for all the accidents is that the average daily probability 

of an accident with bodily injuries (0.2111 bps in column 2 of Table 3) is lower than the average 

daily accident probability overall. The ratio of the last month effect (��� − ∑ ��
��
��� /11) to the 

average daily accident probability for accidents with bodily injuries is still approximately 23%.    

One may argue that a policyholder and another party might collude to create a collision to 

replace auto parts or that a policyholder, another party in the collision, and a hospital might 

collude to file a fraudulent bodily injury claim to earn money. However, nowadays in China, 

monitoring cameras are widely and intensively installed along roads and streets; thus, most 

fraudulent collisions can be detected by investigations. According to the Insurance Law of the 

People's Republic of China, fraudulent claims of more than RMB 10,000 are criminal activities; 

if detected, the penalty includes not only fines but also imprisonment. Therefore, while some 

policyholders might file fraudulent claims for small monetary amounts to replace some auto 

parts, it is very uncommon for people to file fraudulent claims for large monetary amounts. 

Accordingly, we restrict the focus to accidents with a settlement higher than RMB 10,000. 

In column 3 of Table 3, the dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder 

� had an accident on day � with a settlement amount greater than RMB 10,000; ��,� = 0 

otherwise. The sample includes only policies for individual-owned vehicles. The daily 
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probability of an accident with a settlement above RMB 10,000 in the last month of the policy 

term remains significantly higher than that in other months.11  

In column 4 of Table 3, we only include the policies of which the policyholders had no 

accidents in the previous three or more years. These policyholders are less likely to file 

fraudulent claims. The accident probability on a day in the last month of the policy term remains 

significantly higher than that in other months. 

Even if policyholders conduct more fraudulent claims in the last month than in any other 

month of a policy term, this behavior can also be attributed to the sunk cost fallacy. For 

policyholders, the benefit of conducting fraud is the potential insurance proceeds; the cost is the 

possibility of being detected and the corresponding penalty ranging from a fine to imprisonment 

in addition to the time spent filing claims. However, neither the benefit nor the cost of 

conducting fraud varies across different months within the policy term; thus, different months 

within the policy term should not differently affect policyholders’ decision to conduct fraud if 

they are completely rational. Correspondingly, insurance fraud should be distributed evenly 

across different months in a policy term if policyholders who conduct fraud are completely 

rational. 

We obtain similar results if we use monthly-level regressions in which the dependent 

variable is the number of accidents that occurred to the policyholder during the month. Tables 

C.3 and C.4 in the online Appendix are the monthly versions of Tables 2 and 3. 

    

4.5. Concerns about selective reporting 

                                                              
11 We also use RMB 20,000 and RMB 30,000 as the threshold, respectively, and obtain similar results. 

The results are available upon request. 
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One possibility is that some drivers encounter accidents during earlier months within the policy 

term but do not file claims immediately because the damages are small; in the last month, they 

happen to encounter another accident and then claim all the damages together.  

Another possibility is that some drivers do not report accidents in earlier months that 

resulted in car damages, for the thinking that, if another accident occurs at the end of the contract, 

they will report it and deal with all the damages from previous accidents. In this way, the car gets 

fixed but the driver has only one accident on her/his record.  

If these two possibilities of selective reporting drive the last-month effect on accident 

intensity, we should also observe that the accidents that occur in the last month lead to higher 

payments from the insurance company than do accidents in other months. However, in column 1 

of Table 4, using the accident-level data, we run a regression of the payment obtained from the 

insurance company and find that, conditional on having an accident, the payment obtained is not 

significantly higher for an accident that occurs in the last month.12 

[Insert Table 4 here] 

First, at the time of an accident in earlier months in a policy term, drivers do not know 

whether they will encounter another accident within the policy term. Given that accidents are 

rare events (in the data, only 4.25% of policies have 2 accidents, and only 1.59% of policies have 

more than 2 accidents), if drivers do not claim the damage immediately at an accident, the much 

greater likelihood is that they do not have another accident within the policy term and can never 

recover the damage.  

Second, for many damages, technicians can detect when and in what situation the accident 

                                                              
12 In fact, as shown in column 1 of Table 4, the payment obtained is even significantly lower for an 

accident that occurs in the last month than in other months (see Section 4.6 for why it is lower). 
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occurred. Claims for damages that were obviously inflicted several months earlier will not be 

accepted by insurance companies. Meanwhile, drivers cannot expect to repair past damage to a 

side door or the trunk through a current rear-end accident that damages the front part, for 

example. Moreover, drivers cannot predict which part of the car will be damaged by the next 

accident. 

In column 2 of Table 4, we run an unconditional regression of the payment obtained using 

the driver-day-level data (payment equals zero for days without accidents). The results indicate 

that the last month has more payments. The reason is that, although conditional on having an 

accident, accidents in the last month incur smaller damages, insurance companies still lose more 

money in the last month because more accidents occur in the last month. 

In addition, the daily intensity of accidents involving bodily injuries is also elevated in the 

last month of a policy term (see column 2 of Table 3), but people definitely would not wait until 

an accident in the last month to deal with all the bodily injuries from previous accidents. 

 

4.6. Accident severity 

One common belief is that policyholders would not risk their lives and the lives of others merely 

to “get back the premiums.” Therefore, the sunk cost fallacy should have a larger effect in 

making drivers pay less attention to prevent moderate accidents than in making drivers pay less 

attention to prevent severe accidents. Correspondingly, we should observe a higher proportion of 

accidents with small damages in the last month than in other months. As shown in columns 1 and 

3 of Table 4, conditional on an accident occurring, it incurs lower payments from the insurance 

company on average and is less likely to cause bodily injuries if it occurs in the last month than 
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if it occurs in other months.13 

However, this result does not mean that the number of accidents with major damages or 

even bodily injuries is not increased at all in the last month. First, once an accident occurs, the 

severity is partially determined by exogenous factors, such as road conditions and other vehicles, 

which are not under the driver’s control. Second, if some policyholders increase the overall 

distance driven and the number of trips in the last month, they will increase the probabilities of 

accidents at all severity levels by the same percentage. 

The unconditional regression of the driver-day-level indicator on whether an accident with 

a payment above RMB 10,000 occurs (column 3 of Table 3) indicates that more accidents that 

incur a payment above RMB 10,000 occur in the last month than in any other month. The 

unconditional regression of the driver-day-level indicator on whether an accident with bodily 

injuries occurs (column 2 of Table 3) indicates that more accidents with bodily injuries occur in 

the last month than in any other month. 

 

                                                              
13 One may ask why, in column 1 of Table 4, the coefficients of months 1 and 2 are much lower than 

those of months 3-11. The gap still exists even after controlling for the premium (which can affect the 

reported damages based on Gao et al., 2020), as can be seen in column 1 of Table C.6 in the online 

Appendix. This gap is actually driven by new drivers. We divide the sample into new drivers and 

experienced drivers and run the regressions separately. The coefficients of months 1 and 2 are higher than 

those of months 3-11 for new drivers (see column 2 of Table C.6) but not for experienced drivers (see 

column 3 of Table C.6). A possible explanation is that new drivers in the first two months may be 

reluctant to drive on highways or at high speeds and hence the damage given an accident tends to be small, 

although new drivers are more likely to encounter an accident in the first two months, as suggested by 

Figure 1. 
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4.7. Regression discontinuity design 

If the higher daily accident intensity in the last month of a policy term is caused by the sunk cost 

fallacy rather than some other time trend, within two adjacent policy cycles of a driver, we 

should observe a downward discontinuous jump at the beginning of the succeeding policy cycle 

rather than finding that the daily accident intensity in the succeeding policy cycle starts at the 

same level as the end of the preceding policy cycle. 

Therefore, we conduct an RD design. Let � = 0 denote for the last day of a policy term, 

� = −1 for the day before the last day of the policy term, � = 1 for the first day of the 

succeeding policy term for the same driver, � = 2 for the second day of the succeeding policy 

term, and so on. Using drivers with at least two policy cycles in the data, we run the following 

regression within an RD window [−(�̅ − 1), �̅ ] for �̅  to be 30, 60, 90, 120, and 180, 

respectively. 

 

(4.4) ��,� = �� + ���(� ≤ 0) + �(�) + ��� + ��,�,       � ∈ [−(�̅ − 1), �̅]. 

 

��,� is the accident indicator (rescaled to 10,000 bps) on the �th day in vehicle-driver-window 

�. Each RD window consists of two adjacent policy cycles for a driver. �(� ≤ 0) is a 0-1 

indicator of whether the day is in the preceding policy part of the RD window. �(�) is a flexible 

polynomial of �, allowing the coefficients of each term in the polynomial to be different 

between the domain where � ≤ 0  and the domain where � > 0 . In �� , we control for 

vehicle-driver-window fixed effects rather than only vehicle-driver fixed effects because we 

want to ensure that the last 30 days of a driver’s first policy cycle is compared with the first 30 

days of her/his second policy cycle rather than with the first 30 days of her/his third policy cycle 



28 
 

and so on.14 We also control for calendar-month fixed effects in ��. 

The coefficient of main interest is ��. A significantly positive �� indicates that there is a 

significant downward jump in the accident intensity at the beginning of the succeeding policy 

cycle. In panel A of Table 5, we set the degree of the polynomial �(�) equal to 3 and alter the 

RD window bandwidth by changing �̅ from 30 days to 180 days. In panel B of Table 5, we set 

�̅ = 90 and change the degree of the polynomial �(�) from 1 to 5. We find a significantly 

positive �� across all these specifications. 

[Insert Table 5 here] 

In Figure 5, after controlling for vehicle-driver-window fixed effects and calendar-month 

fixed effects, we plot the daily accident intensity (bps) per driver for the last 180 days of the 

preceding policy cycle and the first 180 days of the succeeding policy cycle. There is a sharp 

downward jump at the beginning of the succeeding policy cycle. Figure 5 also shows that, if 

there were no elevation in the last month of a policy cycle, the daily accident probability should 

have been slowly decreasing over time. The reason is that policyholders are accumulating more 

experience in driving over time. 

[Insert Figure 5 here] 

 

5. Other concerns 

5.1. Selection into the last month 

One concern is whether there is a selection effect into who remains for the entire contract term, 

i.e., drivers with lower risk may be more likely to obtain better offers from other insurance 

                                                              
14 We also run the RD regression controlling for driver-vehicle fixed effects and obtain similar results. 

The results are available upon request. 
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companies and then terminate their current contracts earlier, and thus drivers who remain in the 

last month may have relatively high risk. Therefore, in the regressions of this study, we exclude 

the policies with early termination from the sample. We also exclude the policies that had not 

expired by the end of our sampling period.15 16 
                                                              
15 In the raw data, 1.21% of the policies early terminated their mandatory insurance, and 3.13% of the 

policies early terminated their optional insurance and still kept their mandatory insurance. These policies 

are all excluded from the regressions. First, mandatory insurance cannot be terminated early except for 

certain special situations, such as vehicle ownership changes or the vehicle being scrapped; and the prices 

of mandatory insurance are regulated such that, given the type of the car and the driver, different 

insurance companies charge the same price as determined by the regulator. Second, although optional 

insurance allows early termination, it has a high early termination fee (usually approximately 10-20% of 

the annual price), and policyholders need to undergo a time-consuming administrative process. On the 

other hand, the prices of optional insurance are regulated such that, given the type of the car and the driver, 

there exist a suggested price and a narrow floating range provided by the regulator, and each insurance 

company must set its prices within the floating range around the suggested price (usually -15% to +15%). 

Meanwhile, a low-risk driver may also be likely to obtain a better offer with the current company for the 

next term for being at low risk. Consequently, the main reasons for early termination of optional insurance 

are that the policyholders believe that they no longer need the additional coverage on top of the 

mandatory insurance (the minimum coverage required by the regulator), that the vehicle ownership has 

changed, or that the vehicle has been scrapped. Terminating the contract early and switching to another 

company for a better offer are less likely because the reduction in price by a better offer cannot cover the 

transaction cost, especially when it is close to the last month of the policy term. If policyholders want to 

switch providers, they will switch after the current contract expires. 

16 We also conduct regressions with those early terminated policies included in the sample. The results 

are similar and are available upon request. 
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5.2. Measurement errors 

One concern is that policyholders might report an accident many days later after the accident 

date. However, the accident date and the report date are accurately recorded as different variables 

in the insurance company’s database. When defining the monthly dummy ��(�), the weekly 

dummy ��(�), and the daily dummy ��(�) in the regression equations, we use the accident 

date rather than the report date. 

Another concern is whether the recorded accident date could be later than the true accident 

date. In fact, the accident date is not only self-reported by drivers but also is verified by 

insurance companies. Drivers are required to call the police and the insurance company within 

48 hours after an accident occurs. Thereafter, the insurance company will promptly send 

investigators to the site to check the involved vehicle or the traces, determine liability, and 

provide preliminary estimates for losses and repair recommendations. Usually, the insurance 

company will finish the investigation process within one day after the call. Figure 6 displays the 

histogram of the number of days from the accident date to the report date. 

[Insert Figure 6 here] 

If these concerns were true, we should also have observed a significantly positive 

last-month effect for the regression using the sample of company or government owners (column 

2 in Table 2) and for the regression of exogenous accidents (column 4 in Table 2), but we do not 

observe such effects. 

 

5.3. Do drivers know that an accident could increase their future premiums? 

If policyholders know that their future premiums could be increased by an accident in the current 
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policy term, the magnitude of the last-month effect caused by the sunk cost fallacy could be 

mitigated. In this subsection, we first use the premium data to examine how premiums change 

according to drivers’ accident histories. Then, we provide an estimate for the premium increase 

in the next policy term caused by an accident in the current term given a driver’s accident history. 

Finally, we analyze how the magnitude of the last-month effect differs across drivers with 

different accident histories. 

To examine how premiums change according to drivers’ accident histories, we run the 

following regression: 

 

(5.1) �������� = � ∙ ������_ℎ���� + ��� + ��. 

 

Drivers’ accident histories are categorized into the following levels: no accident for 3 or more 

years, no accident for 2 years, no accident for 1 year, new driver, 1 accident in the previous year, 

2 accidents in the previous year, and 3 or more accidents in the previous year. ������_ℎ���� in 

equation (5.1) is a set of dummy variables for the seven categories. �� is a rich set of control 

variables, including the driver’s age, gender, driving experience, and location, as well as the car 

age and the fixed effect for the car model. The regression results displayed in Table 6 show that 

policyholders with a worse accident history need to pay higher premiums. 

[Insert Table 6 here] 

Based on the estimates in Table 6, for each category of accident history, we calculate the 

average premium difference in the next term between the case in which the driver encounters one 

accident in the current term and the case in which the driver does not encounter any accident in 

the current term, as displayed in the last column of Table 7. For example, if the accident history 
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for the current policy term is “no accident for 2 years,” the average next-term premium 

difference between one accident and no accident in the current term is RMB 706.19 (the 

premium for the history of “1 accident in the previous year” minus the premium for the history 

of “no accident for 3 or more years”). The better the accident history for the current term, the 

greater the increase in the next-term premium caused by an accident in the current term 

compared with no accident in the current term. 

[Insert Table 7 here] 

Next, we run a regression of drivers’ daily accident indicators on their accident histories, 

controlling for other driver and vehicle characteristics. The results (reported in column 1 of Table 

8) indicate that drivers with worse accident histories have higher probabilities of an accident.17 

In this regression, the coefficient of the last month indicator is significantly positive, which 

means that drivers have a higher accident probability in the last month of the contract term. In 

column 2 of Table 8, we add the interaction terms between the last month indicator and the 

accident history categories. There is a rough pattern that the better the accident history, the 

smaller the increase in the accident probability in the last month, probably because of a 

potentially larger future premium increase by a current accident. This pattern indicates that 

drivers might consider that an accident will increase the next-term premium, but this 

consideration is not sufficiently strong to fully stall reducing the loss-prevention effort in the last 

month due to the sunk cost fallacy. 

                                                              
17 In this regression, we do not control for driver-vehicle fixed effects. If we add driver-vehicle fixed 

effects, then the variation in accident histories is within a driver, and there is no empirical pattern that, 

within a driver, a worse accident history will lead to higher accident probabilities in the current policy 

term. 
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[Insert Table 8 here] 

There could be several reasons why the consideration of premium increases fails to fully 

stall the effect of the sunk cost fallacy. First, the increase in the next-term premium caused by 

one accident in the current term is usually small relative to the premium (approximately RMB 

3,000 on average). 

Second, policyholders can have some ambiguity regarding how much of an increase in the 

next-term premium can be caused by one accident in the current term. Although drivers should 

know the general principle that their premiums partially depend on their accident histories, they 

are unclear about the formula that the insurance company uses to determine their premiums and 

thus do not know the exact increase in the next-term premium caused by one accident in the 

current term. It is also difficult for drivers to infer the exact increase based on their own 

experience. They may experience a premium increase for many reasons, such as changes in 

driver ages, car ages, regulatory policies, insurance market competition, insurance companies’ 

pricing strategies, and sales commission, as well as inflation.18 It is difficult for drivers to 

attribute the correct proportion of the premium increase to the change in accident histories.  

Third, the possible premium increase may not be sufficiently salient to drivers. Even though 

drivers reduce their efforts in the last month, the accident probability is still very low because 

                                                              
18 In China, sales commission constitutes a large proportion of a premium. Even for the same insurance 

product provided by the same insurance company, the sales commission varies dramatically across 

different sales channels and agents. The sales channels include car dealerships (4S shops), insurance 

brokers, insurance companies’ own branches, and the online and telephone channels. Sometimes sales 

agents yield part of their commissions to insurance purchasers as price discounts to promote insurance 

sales. 
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accidents are rare events. Many experimental studies in economics and finance have suggested 

that people are relatively insensitive to a small change in the probability of an event when the 

probability is close to zero and that people are relatively sensitive to a small change in the 

probability of an event when the probability is close to one (e.g., the Allais Paradox in Allais, 

1953). In the last month, the probability of incurring an increase in the next-term premium by an 

accident to the mental account of acquisition utility is still close to zero, whereas the probability 

of “wasting the premium” in the mental account of transaction utility is sufficiently close to one 

if no accident has occurred. 

 

5.4. Sunk cost fallacy vs. rational behavior 

Most types of auto insurance in China only have per-accident coverage limits. For example, 

mandatory insurance only has coverage limits for each accident, including RMB 110,000 for 

death or disability, RMB 10,000 for medical payments, and RMB 2,000 for property damage if at 

fault, and RMB 11,000 for death or disability, RMB 1,000 for medical payments, and RMB 100 

for property damage if not at fault. However, some types of auto insurance also have a cap on the 

total losses within a contract term in addition to per-accident caps: insurance compensating the 

policyholder for the days when the vehicle is being fixed has a cap on the total number of days 

compensated within a policy term; collision insurance has an annual coverage limit that is equal 

to the current value of the insured vehicle (new car price minus depreciation) determined at the 

beginning of the policy term; and scratch insurance also has an annual coverage limit. 

If there is an annual coverage limit for the entire policy term, the elevated accident risk in 

the last month of the policy term can be generated by rational policyholders. In Appendix A.2, 

we build a rational agent model that can generate the elevated accident risk in the last month if 
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there is an annual coverage limit. The intuition is that policyholders face uncertainty for a longer 

period during the early months of a policy term than they do later in the policy term. Given that a 

policyholder makes a low loss-prevention effort during the early months of a policy term and 

hence encounters an accident, if the policyholder encounters another accident later in the policy 

term, the accumulated loss may surpass the annual coverage limit, and the policyholder will have 

to bear some loss herself/himself. Therefore, a policyholder would make a higher effort during 

the early months of a policy term; if no accident is encountered, she/he will later reduce the 

effort level, which leads to a higher accident risk as the expiration date of the policy approaches. 

However, if there are only per-accident coverage limits and no annual coverage limits, a 

fully rational policyholder would not reduce the effort as the policy contract approaches the 

expiration date.  

We first restrict the sample to policyholders whose insurance only has per-accident 

coverage limits. The regression results of equation (4.1) for this subsample (291,592 policies) are 

reported in column 1 of Table 9. The accident probability on a day in the last month of the policy 

term remains significantly higher than that on a day in other months. 

[Insert Table 9 here] 

If the cumulative settlement proceeds within the policy term have surpassed the premium 

before the last month of the policy term, the policyholder should be less susceptible to the sunk 

cost fallacy that can elevate the last-month accident risk. The reason is that policyholders may 

think that they have already “gotten the premium money back” and do not need to reduce their 

loss-prevention efforts during the remaining contract term. Therefore, for each policyholder with 

only per-accident coverage limits, we further restrict the observations to the days in the policy 

term after the cumulative settlement proceeds within the policy term surpassed the premium; the 
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results are reported in column 2 of Table 9. The accident probability on a day in the last month of 

the policy term is no longer significantly higher than that on a day in other months. 

On the other hand, we restrict the sample to policyholders whose insurance has both 

per-accident coverage limits and annual coverage limits. As shown in column 3 of Table 9, for 

this subsample (276,180 policies), the accident probability on a day in the last month of the 

policy term is significantly higher than that on a day in other months, which is the same as 

column 1 of Table 9. However, for these policyholders, when we include only the observations 

for the days in the policy term after the cumulative settlement proceeds within the policy term 

surpassed the premium, as shown in column 4 of Table 9, the accident probability on a day in the 

last month of the policy term is significantly higher than that on a day in other months. This 

result pattern is different from that in column 2 of Table 9. The reason is that, for insurance with 

annual coverage caps, the elevated accident risk in the last month of a policy term is due to not 

only the sunk cost fallacy but also the rational behavior modeled in Appendix A.2.19 

 

5.5. Why only the last month? 

The theoretical model in Section 3 implies that the effort level should decrease gradually every 

day during the 365-day term and thus the accident probability should increase gradually. The 

intuition is that, at the beginning of a policy cycle, there are still many opportunities for drivers 

                                                              
19 In Table 9, the magnitude of the negative coefficients of �� through ��� in column 4 is larger than 

that in column 3. The reason is that the regression in column 4 only includes the days after the cumulative 

settlement proceeds within the policy term surpassed the premium. Therefore, policyholders who have no 

accident in the policy term are excluded from the sample. If these policyholders were included, they 

would tend to reduce the magnitude of the negative coefficients of �� through ���. 
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to “get the insurance money’s worth” or “break even”; as time passes, the opportunities are 

diminishing. 

However, the empirical results (the last diagram in Figure 4) show that the daily accident 

intensity increases gradually every day only in the last month of the term; the intensity holds 

almost constant during the first eleven months of the term (slightly increasing during the 10th and 

11th months).  

The salience theory may serve as a possible explanation. In the last month, the need to “get 

the insurance money’s worth” or “break even” becomes fully salient to policyholders because 

they start to realize that there are only a few chances left if they have not yet encountered any 

accident or the insurance payment that they received has not surpassed the premium. Accordingly, 

the policyholders’ loss-prevention effort levels follow the predictions of equations (3.3) and (3.2) 

and increase over time. At other times, the sunk cost is not salient to policyholders because there 

are still many chances to “get the premium back”; thus, they behave as if they were rational 

agents. Accordingly, their loss-prevention effort levels follow the prediction of equation (3.1) and 

do not change over time. 

Dalton et al. (2020) studied the weekly medical spending of Medicare Part D enrollees and 

found a similar pattern. Medicare Part D has a nonlinear benefit structure: enrollees face modest 

out-of-pocket expenditures in the initial coverage region until their accrued total year-to-date 

drug spending reaches a threshold, after which they will pay the full prices of all drugs. Suppose 

that an enrollee is currently in the initial coverage region but forecasts that she/he will end the 

year above the threshold. If she/he is a rational dynamically optimizing enrollee, she/he should 

choose increasingly cheaper or fewer drugs as she/he approaches the threshold. However, Dalton 

et al. (2020) found that the weekly medical spending is flat in the initial coverage region and then 
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starts to drop near the threshold, which can be explained by salience theory. 

In the situation of our study, a rational policyholder should make a constant loss-prevention 

effort over the entire policy term; an irrational policyholder affected by the sunk cost fallacy but 

not the salience effect should gradually decrease her/his effort as she/he approaches the policy 

expiration date; and an irrational policyholder affected by both the sunk cost fallacy and the 

salience effect should only start to gradually decrease her/his effort at a time point close to the 

policy expiration date.  

Salience effects were also empirically detected by several other studies. Busse et al. (2015) 

found that, when consumers purchase a car (a durable good), the choice to purchase a convertible 

or a four-wheel-drive is highly dependent on the weather at the time of purchase. Chang et al. 

(2018) found that the air pollution level in a day has a significant effect on the decision to 

purchase or cancel long-term health insurance. Chetty et al. (2009) found that increases in taxes 

included in posted prices reduce alcohol consumption more than increases in taxes applied at the 

register. Pan et al. (2019) studied land sales along two sides of the heating-service line in China. 

They found that, compared to transactions in the north where heating services are provided, land 

parcels in the south have a lower price only when the transactions occur in winter because land 

buyers to the south of the boundary of heating services factor in the disutility from cold winters 

only when they purchase land in winter. Abaluck et al. (2018) studied consumer salience in 

medical spending. Bordalo et al. (2012) developed a salience theory of choice under risk. 

 

6. Quantifying the proportion of accidents caused by the sunk cost fallacy 

In this section, we quantify the proportion of accidents that can be attributed to the sunk cost 

fallacy. Following the literature (e.g., Kleven and Waseem, 2013; Chen et al., 2019), we use a 
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flexible polynomial to estimate the counterfactual daily accident intensity in the last three 

months of a policy term without the sunk cost fallacy for individual policyholders. 

In the first step, we run a driver-day-level regression of the accident indicator on the fixed 

effects for each day of the policy term and control variables (as displayed in equation (4.3)). 

Then, we obtain the estimated daily fixed effects. Let �� denote the estimated fixed effect for 

the �th day since the policy starts, � = 1, 2, … , 365.  

In the second step, we use the estimated daily fixed effects excluding the days in the last 

three months (from the 271st day to the 365th day) to fit a flexible polynomial, by running the 

following regression:  

 

(6.1) �� = � ����

�

���

+ � ��

���

�����

�(� = �) + ��, 

 

where � is the degree of the flexible polynomial and �� are daily fixed effects for the excluded 

range. We choose the last three months to be the excluded range because the daily accident 

intensity starts to increase slightly in the 10th month, as shown in the last diagram of Figure 4. 

The counterfactual daily fixed effects in the last three months without the sunk cost fallacy are 

obtained as the predicted values from (6.1) omitting the contribution of the dummies in the 

excluded range, i.e., �̂� = ∑ ������
��� , � = 271, 272, … , 365. Then, the proportion of accidents 

that can be attributed to the sunk cost fallacy is estimated as 

 

(6.2) �� =
∑ (�� − �̂�)���

�����

365 ×  ���� �� ����� �������� �����������
. 
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Column 1 of Table 10 reports the quantified proportion of accidents that can be attributed 

to the sunk cost fallacy for policyholders with only per-accident coverage limits, with the 

degrees of the polynomial ranging from 0 to 2. The quantified proportion is 2-3%. Column 2 of 

Table 10 reports ��  for policyholders with annual coverage limits. For each degree of 

polynomial, �� in column 2 is higher than �� in column 1 because, for policyholders with 

annual coverage limits, the increase in the daily accident intensity in the last three months could 

be caused not only by the sunk cost fallacy but also by the rational behavior modeled in 

Appendix A.2. 

[Insert Table 10 here] 

To determine the degree of the flexible polynomial (�), we fit a flexible polynomial using 

the estimated daily fixed effects for the first 8 months and then check the out-sample fit of the 

polynomial for the estimated daily fixed effects in the 9th month. We find that a zero-degree 

polynomial has a better out-sample fit. Therefore, in Table 10, the proportion that is quantified 

using a zero-degree polynomial is more reliable.  

This 2-3% proportion of accidents could result in tremendous losses because the 

automobile insurance industry is enormous. According to the China Banking and Insurance 

Regulatory Commission, during 2018, 448 million automobile insurance policies were sold with 

total revenue of RMB 783.4 billion, and RMB 440.3 billion were paid by insurance companies as 

settlement proceeds. Moreover, the market size is rapidly growing because car ownership is 

rapidly increasing every year in China (by 8.83% in 2019). 

 

7. Policy Implications 

Because the sunk cost fallacy can cause drivers to irrationally make fewer loss-prevention or 
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hazard-mitigation efforts in the last month of the policy term, which is nonoptimal for them, 

drivers should consciously make more efforts in the last month. Education to improve awareness 

of the sunk cost fallacy could be helpful. 

In addition, we propose two types of methods for insurance companies to reduce losses 

caused by policyholders’ sunk cost fallacies. 

The first type of methods is simply sending a text message or an email to a policyholder in 

the last month of the policy term if the policyholder has not encountered any accident or the 

insurance payment has not surpassed the premium during the first eleven months, stating 

something like the following: “Congratulations! You have successfully maintained an excellent 

driving record in the previous eleven months. Please continue to maintain the record in the last 

month and then enjoy a premium discount of $x for your next policy term.” The purpose of the 

message or email is to render the benefit of loss-prevention efforts relatively more salient and to 

make the sunk costs relatively less salient to policyholders in the last month.20  

The second type of methods involves redesigning the policy contract, such as increasing the 

deductible or decreasing the per-accident coverage limit for accidents that occur in the last month 

of a policy term, to make policyholders expend more loss-prevention efforts when the sunk costs 

become salient. The mechanism of these methods is to increase policyholders’ expected 

                                                              
20 Field experiments have found that text message reminders are effective in multiple scenarios, including 

reducing drivers’ traffic violations (Chen et al., 2017; Lu et al., 2016), improving borrowers’ repayments 

for online P2P lending (Du et al., 2020; Huang and Bao, 2020), credit cards (Bursztyn et al., 2015), and 

microloans (Cadena and Antoinette, 2011), enhancing tax compliance (Hallsworth et al., 2014), increasing 

commitment attainment for banks’ clients with commitment savings accounts (Karlan et al., 2016), and 

enforcing compliance with TV license fees (Fellner et al., 2013). 
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out-of-pocket loss from a last-month accident in the acquisition utility to catch up with the 

increasingly salient benefit of a last-month accident in the transaction utility in their mental 

accounts. 

In future research, it would be contributive to conduct field experiments to investigate the 

effectiveness of the two types of methods proposed in this section to mitigate the effect of the 

sunk cost fallacy on the accident-risk elevation in the last month. 

 

8. Conclusion 

In traditional economic models, agents are rational and would not take into account sunk costs 

when making decisions because sunk costs have already been incurred and cannot be reversed. 

However, several empirical and experimental studies have noted that sunk costs do affect 

decisions made by individuals and firms, which is referred to as the “sunk cost fallacy.” These 

studies found that the sunk cost fallacy causes individuals or firms to make decisions that are not 

the first best. 

In this paper, we examine the auto insurance market and find that the sunk cost fallacy not 

only can cause agents to make nonoptimal decisions for themselves but also can exacerbate 

moral hazard and thereby cause direct losses to other parties. Using proprietary data from an auto 

insurance company, we find that policyholders are more likely to encounter accidents during the 

last month before the one-year insurance contracts expire than at other times. This phenomenon 

is not due to the calendar-month effects because different policy contracts can start in different 

calendar months. We also demonstrate that the elevated accident risk in the last month is not 

fully driven by rational behavior, the fraudulent-claims channel, selective reporting, selectivity 

caused by early termination, and measurement errors. 
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Due to the sunk cost fallacy, as the contract approaches the expiration date, policyholders 

could start to be concerned that they may “waste” the premium paid at the beginning of the 

policy term if they have not encountered an accident before the policy expires or the insurance 

payment received has not surpassed the premium, and thus they will reduce their efforts to 

prevent accidents or mitigate accident hazards. A rational policyholder without the sunk cost 

fallacy should not expend less effort in the last month than in other months of a policy term. The 

reason is that neither the benefits nor the costs of reducing effort vary across different months 

within the policy contract term. In contrast, an irrational policyholder with the sunk cost fallacy 

may have a mental account of transaction utility, in which the total settlement proceeds that the 

policyholder receives compared to the premium that she/he paid upfront may affect her/his 

perception of whether she/he received a good deal when purchasing the policy, of the fairness of 

the premium the company charged her/him, or of whether she/he “got the premium’s worth.”  

Based on our estimates, 2-3% of accidents of individual policyholders are caused by the 

sunk cost fallacy. The resulting losses can be tremendous because the automobile insurance 

industry is enormous. According to the China Banking and Insurance Regulatory Commission, 

during 2018, 448 million automobile insurance policies were sold with total revenue of RMB 

783.4 billion, and RMB 440.3 billion were paid by insurance companies as settlement proceeds.    

The results provide two important implications: one for policyholders and the other for 

insurance companies. First, policyholders should consciously expend more loss-prevention or 

hazard-mitigation efforts when driving during the last month of the policy term because the sunk 

cost fallacy can cause them to expend fewer efforts in that month, which is not a rational 

decision. Education to improve awareness of the sunk cost fallacy could be helpful. Second, 

insurance companies could send a message to policyholders in the last month of the policy term 
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to render the benefit of maintaining good records more salient to policyholders. Insurance 

companies could also redesign policy contracts to mitigate the additional moral hazard in the last 

month due to policyholders’ sunk cost fallacy, such as increasing the deductible or decreasing the 

per-accident coverage limit for accidents that occur in the last month.  
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Appendix 

A.1. Proofs of Propositions 1 and 2 stated in Section 3 

Proposition 1: ��
∗<�̂ and ��

∗(��) ≤ �̂, i.e., the loss-prevention effort on day 1 and day 2 

when the sunk cost fallacy exists is lower than the effort on day 1 and day 2, respectively, when 

the sunk cost fallacy does not exist. 

Proof:  

To equation (3.1) where a driver does not have the sunk cost fallacy, the solution of effort 

�̂ on day 1 and day 2, respectively, should satisfy the following first-order condition: 

 

(A.1) −�′(�̂) � �(�)�(�)��
�̅

�

= 1. 

 

In the situation where a driver has the sunk cost fallacy, the solution to equation (3.2), 

��
∗(��) on day 2 given �� received on day 1, should satisfy the following first-order condition: 

 

(A.2) 

−�′���
∗(��)� � �(�)�(�)��

�̅

�

= 1

+ ��′���
∗(��)� �� max{���� − �� − �(�), 0} �(�)��

�̅

�

− max {���� − ��, 0}�. 

 

Because ∫ max{���� − �� − �(�), 0} �(�)��
�̅

�
<  max {���� − ��, 0}  and �′���

∗(��)� < 0 , 

we have  

 



46 
 

(A.3) −�′���
∗(��)� � �(�)�(�)��

�̅

�

> 1. 

 

Comparing (A.1) and (A.3), because ���(. ) > 0, we have ��
∗(��) < �̂. 

The solution to equation (3.3), ��
∗ on day 1, should satisfy the following first-order 

condition: 

 

(A.4) −��(��
∗) � �(�)�(�)��

�̅

�

= 1 + �′(��
∗) ���(0) − � ��(�(�))�(�)��

�̅

�

�. 

 

By the envelope theorem, from equation (3.2), we have 

��′(��) = −�����
∗(��)�

� ∫ max{���� − �� − �(�), 0} �(�)��
�̅

�

���

− � �1 − ����
∗(��)��

�max {���� − ��, 0}

���
. 

Then, we have ��′(��) ≥ 0, and “>” holds for a certain domain of ��. Consequently, in (A.4), 

��(0) − ∫ ����(�)��(�)��
�̅

�
< 0. Because ��(. ) < 0,  

 

(A.5) −�′(��
∗) � �(�)�(�)��

�̅

�

> 1. 

 

Comparing (A.1) and (A.5), because ���(. ) > 0, we have ��
∗ < �̂. 

 

Proposition 2: ��
∗>��

∗(0), i.e., if no accident occurs on day 1, a policyholder with the sunk 

cost fallacy will reduce her/his loss-prevention effort on day 2 compared to her/his effort on day 
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1. 

Proof: 

Based on (A.2), if the payment from the insurance company on day 1 is zero (��=0), then 

the effort on day 2, ��
∗(0), should satisfy the following first-order condition: 

 

(A.6) 

−�′���
∗(0)� � �(�)�(�)��

�̅

�

= 1 + ��′���
∗(0)� �� max{���� − �(�), 0} �(�)��

�̅

�

− �����. 

 

Comparing (A.4) and (A.6), because ��(. ) < 0 and ���(. ) > 0, to prove that ��
∗>��

∗(0), 

we only need to show: 

 

(A.7) ��(0) − � ����(�)��(�)��
�̅

�

> � �� max{���� − �(�), 0} �(�)��
�̅

�

− �����. 

 

Based on equation (3.2), when ��=0, 

��(0) = −��
∗(0) − ����

∗(0)� � �(�)�(�)��
�̅

�

− ����
∗(0)�� � max{���� − �(�), 0} �(�)��

�̅

�

− �1 − ����
∗(0)��� ∙ ����. 

For ∀� ∈ (0, �̅], ��(0) = ��(��
∗(0)|0) > �����

∗��(�)�|0�. Therefore, 

��(0) = � ��(0)�(�)��
�̅

�

> � �����
∗��(�)�|0��(�)��

�̅

�

. 
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��(0) − � ����(�)��(�)��
�̅

�

> � ������
∗��(��)�|0� − ����(��)�� �(��)���

�̅

�

= � ������
∗��(��)�|0� − �� ���

∗��(��)�|�(��)�� �(��)���

�̅

�

= � � �−� ���
∗��(��)�� � max{���� − �(��), 0} �(��)���

�̅

�

�̅

�

− �1 − � ���
∗��(��)��� ����

+ � ���
∗��(��)�� � max{���� − �(��) − �(��), 0} �(��)���

�̅

�

+ �1 − � ���
∗��(��)��� max{���� − �(��), 0}� �(��)���

= � � �−����
�̅

�

+ max{���� − �(��), 0} + � ���
∗��(��)�� (���� − max{���� − �(��), 0})

− � ���
∗��(��)�� � max{���� − �(��), 0} �(��)���

�̅

�

+ � ���
∗��(��)�� � max{���� − �(��) − �(��), 0} �(��)���

�̅

�

� �(��)���. 

Let 

�(��) =  � ���
∗��(��)�� (���� − max{���� − �(��), 0})

− � ���
∗��(��)�� � max{���� − �(��), 0} �(��)���

�̅

�

+ � ���
∗��(��)�� � max{���� − �(��) − �(��), 0} �(��)���

�̅

�

. 

Then, 
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��(0) − � ����(�)��(�)��
�̅

�

>  � �� max{���� − �(�), 0} �(�)��
�̅

�

− ����� +  � � �(��)�(��)���

�̅

�

. 

When �(��) ≥ ����,  

�(��) =  � ���
∗��(��)�� ����� − � max{���� − �(��), 0} �(��)���

�̅

�

� > 0. 

When �(��) < ����, given ��, divide the domain of �� into three segments, (0, ��], 

(��, ��] , and (��, �̅] , such that �(��) = ���� − �(��)  and �(��) = ���� . Consequently, 

when �� ∈ (0, ��], �(��) + �(��) − ���� ≤ 0; when �� ∈ (��, ��], �(��) + �(��) − ���� >

0  and �(��) ≤ ���� ; when �� ∈ (��, �̅],  �(��) + �(��) − ���� > 0  and �(��) > ���� . 

Then, we have 

�(��) =  � ���
∗��(��)�� ��(��) − � ����� − �(��)��(��)���

��

�

− � ����� − �(��)��(��)���

��

��

+ � ����� − �(��) − �(��)��(��)���

��

�

�

=  � ���
∗��(��)�� ��(��) − � �(��)�(��)���

��

�

− � ����� − �(��)��(��)���

��

��

�

=  � ���
∗��(��)�� �� (�(��) + �(��) − ����)�(��)���

��

��

+ � �(��)�(��)���

�̅

��

�

> 0. 

Therefore, for ∀�� ∈ (0, �̅], �(��)>0. Then, we have 
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��(0) − � ����(�)��(�)��
�̅

�

>  � �� max{���� − �(�), 0} �(�)��
�̅

�

− ����� +  � � �(��)�(��)���

�̅

�

>  � �� max{���� − �(�), 0} �(�)��
�̅

�

− �����. 

Thus, (A.7) is true, and ��
∗>��

∗(0). 
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A.2. Rational agent model with an annual coverage limit 

As discussed in Section 5.4, if a policy only has a per-accident coverage limit, the elevated 

accident risk in the last month of the policy term can only be explained by the sunk cost fallacy. 

However, if a policy has an annual coverage limit, the elevated accident risk in the last month of 

the policy term can also be explained by rational behavior. The intuition is that policyholders 

face uncertainty for a longer period during early months of a policy term than they do later in the 

policy term. Given that a policyholder makes a low accident-prevention effort during early 

months of a policy term and hence encounters an accident, if the policyholder encounters another 

accident later, the accumulated loss may surpass the annual coverage limit, and the policyholder 

will have to bear some loss by herself/himself. Therefore, a policyholder would expend a higher 

effort at the beginning; if no accident is encountered, she/he will later reduce the effort level, 

which leads to a higher accident risk as the expiration date of the policy approaches. 

In Appendix A.2, we build a rational agent model that can generate the elevated accident 

risk in the later part of a policy if there is a coverage limit for the cumulative loss in the entire 

policy term. 

Without loss of generality, suppose that a policy contract term has only two days. On each 

day, the policyholder can either have no accident or encounter one accident. The probability of 

encountering an accident on a day is �(�), where � is the effort or caution that the policyholder 

exerts on the day to prevent an accident. Assume that �′(�) < 0 and ���(�) > 0, i.e., the effort 

will reduce the probability of an accident and the marginal effect of effort is diminishing. 

Conditional on an accident occurring, a random loss � will be incurred, with the probability 

density function �(�) defined on the support (0, ��]. 

Assume that the coverage limit of the policy for the total loss in the entire contract term is 
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�. For simplicity, we assume that the policy has neither deductibles nor per-accident coverage 

limits. However, the conclusion is extendable to the case in which deductibles and per-accident 

coverage limits exist. The expected payoff for the policyholder on the first day is  

��(��) = −�� − �(��) � (��

��

�

− �)�(��)���. 

Given the effort level on the second day, ��, the expected payoff for the policyholder on the 

second day conditional on the loss on the first day �� is 

��(��|��) = −�� − �(��) � [�� − max{� − ��, 0}]
��

���{����,�}

�(��)���. 

The policyholder’s optimal effort levels in the two days will be solved recursively. On the 

second day, the optimization problem for the policyholder given �� is as follows: 

��(��) = max
��|��

��(��|��). 

The first-order condition w.r.t. �� is 

 

(B.1) −�′(��) � [�� − max{� − ��, 0}]
��

���{����,�}

�(��)��� = 1. 

 

��(��) is the indirect payoff function given that the optimal effort level ��
∗ is chosen. 

On the first day, the policyholder’s optimization problem is as follows: 

��(��) = max
��

��(��) + �[��(��)|��], 

where �[��(��)|��] = �1 − �(��)���(0) + �(��) ∫ ��(��)
��

�
�(��)���. The first-order condition 

w.r.t. �� is 
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(B.2) −�′(��) � (��

��

�

− �)�(��)��� = 1 + �′(��) ���(0) − � ��(��)
��

�

�(��)����. 

 

Proposition B.1: (i) the optimal effort on the second day ��
∗ is increasing in the loss on 

the first day ��, i.e., 
���

∗(��)

���
≥ 0; (ii) at least, ��

∗ > ��
∗(0), i.e., if no accident occurs on the first 

day, the effort level on the second day will be lower than that on the first day. 

Proof: 

(i) Differentiate equation (B.1), the first-order condition of the optimization problem on the 

second day, w.r.t. ��. After rearrangement, we have: 

���
∗(��)

���
=

⎩
⎨

⎧ �′(��
∗) ∫ �(��)

��

����
���

−�′′(��
∗) ∫ [�� − (� − ��)]

��

����
�(��)���

> 0, � − �� ≥ 0

0, � − �� < 0

 

(ii) When �� = 0, the first-order condition of the second day (equation (B.1)) degenerates 

to 

 

(B.3) −�′���
∗(0)� � [�� − M]

��

�

�(��)��� = 1. 

 

In the first-order condition of the first day (equation (B.2)),  

��(0) − � ��(��)
��

�

�(��)��� > 0, 

because ��(0) > ��(��) for ∀ �� > 0. Therefore,  

 

(B.4) −�′(��
∗) � (��

��

�

− �)�(��)��� = 1 + �′(��
∗) ���(0) − � ��(��)

��

�

�(��)���� < 1. 
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Compare equation (B.4) with equation (B.3); because ���(. ) > 0, we have 

��
∗ > ��

∗(0). 

It is easy to show that if there are only per-accident coverage limits and no coverage limits 

for the entire policy term, a rational policyholder would not reduce loss-prevention effort as the 

policy contract approaches the expiration date. In this case, the rational policyholder faces a 

separate coverage limit on each of the two days; therefore, the decisions of effort levels on each 

of the two days are independent of each other. 
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Figure 1. Accident counts. Panel A displays the accident counts in the data for each month 

within the one-year policy cycle. There is a spike in the last month of the cycle. The accident 

counts in the first two months are also abnormally high, mainly driven by new drivers (first-year 

drivers). New drivers have higher risk in the first two or three months and an additional month of 

driving experience is very helpful for them to reduce the risk. Panels B and C of Figure 1 report 

accident counts for new drivers and experienced drivers (with more than one year of driving 

experience), respectively. Each of the first eleven months of a policy term has 30 days; the 

remaining days of the policy term are assigned to the last month. Consequently, the last month 

can have more than 30 days (mostly 35 days). Correspondingly, to avoid exaggerating the 

number of accidents that occur in the last month, the accident counts of each policy in the last 

month are rescaled by dividing them by the number of days assigned to the last month and 

multiplying by 30. 
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Figure 2. Accident counts in the first two policy cycles. The figure displays the accident 

counts for each month within the first two policy cycles for drivers that were served by the 

insurance company for at least two policy cycles. There is a spike in the last month of each 

policy cycle (the 12th and 24th months). Each of the first eleven months of a policy term has 30 

days; the remaining days of the policy term are assigned to the last month. Consequently, the last 

month can have more than 30 days (mostly 35 days). Correspondingly, to avoid exaggerating the 

number of accidents that occur in the last month, the accident counts of each policy in the 12th 

and 24th months are rescaled by dividing them by the number of days assigned to the month and 

multiplying by 30. 
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Figure 3. Display of estimates (all policyholders). Vertical bars in the first two diagrams 

represent the 95% confidence intervals. The last point in each diagram is not estimated; it is set 
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to be zero as the benchmark. All of the other points are estimated and are relative to the 

benchmark.  
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Figure 4. Display of estimates (individual-owned vehicles vs. company- or 

government-owned vehicles). Vertical bars in the diagrams in the first two rows represent the 

95% confidence intervals. The last point in each diagram is not estimated; it is set to be zero as 

the benchmark. All of the other points are estimated and are relative to the benchmark. 
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Figure 5. Regression of discontinuity. Equation (4.4) with �� + ���(� ≤ 0) + �(�) replaced 

by the daily fixed effects is estimated. Each bubble represents the daily fixed effect for a day 

within the last 180 days of the preceding term and the first 180 days of the succeeding term. The 

last day of the preceding term is denoted as day 0, and the first day of the succeeding term is 

denoted as day 1. 
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Figure 6. Distribution of the number of days from the accident date to the report date 
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Table 1. Descriptive statistics 

Variable N Mean Std Dev 

    

Policyholder age (years) 630,983 39.88 9.52 

Female 630,983 0.1974 0.3980 

Seat number  630,982 4.74 1.71 

Vehicle age (years) 596,608 4.21 3.44 

Company- or government-owned 630,983 0.1000 0.3000 

Premium (RMB) 630,983 2989.39 2814.84 

Number of accidents per policy 630,983 0.2745 0.6519 

Settlement payment per policy (RMB) 630,983 1778.96 15264.01 

Settlement payment per accident (RMB) 173,202 6480.84 19285.58 

Settlement payment per policy for policies with accidents (RMB) 121,954 9204.25 33721.52 
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Table 2. Baseline results 

 Column 1:  

All car owners 

Column 2:  

Company or 

government owners 

Column 3:  

Individual owners 

Column 4: 

Exogenous accidents 

Column 5: 

Non-exogenous 

accidents 

 Est. S. E. Est. S. E. Est. S. E. Est. S. E. Est. S. E. 

�� -3.3012***  0.1297  -0.0258  0.3231  -3.7119***  0.1400  0.0049  0.0125  -7.1218***  0.3582  

��  -3.5867***  0.1212  0.5016  0.3029  -4.0813***  0.1308  0.0114  0.0118  -7.9252***  0.3323  

��  -3.8184***  0.1141  -0.1424  0.2820  -4.2619***  0.1232  0.0160  0.0128  -7.9710***  0.3197  

��  -3.6354***  0.1085  0.1906  0.2714  -4.0917***  0.1170  0.0110  0.0111  -7.7675***  0.3076  

��  -3.5528***  0.1045  -0.0408  0.2632  -3.9717***  0.1126  0.0107  0.0095  -7.7524***  0.3003  

�� -3.4890***  0.1006  -0.1356  0.2545  -3.8894***  0.1083  0.0072  0.0089  -7.4814***  0.2928  

��  -3.3350***  0.0981  0.2203  0.2534  -3.7535***  0.1054  0.0011  0.0084  -7.4170***  0.2849  

��  -3.1319***  0.0957  0.6599**  0.2536  -3.5716***  0.1026  0.0073  0.0092  -7.3892***  0.2753  

�� -3.1278***  0.0936  -0.0151  0.2429  -3.4812***  0.1006  0.0156  0.0106  -6.9927***  0.2700  

��� -2.7988***  0.0921  0.1958  0.2384  -3.1302***  0.0989  -0.0031  0.0085  -6.6479***  0.2645  

��� -2.2681***  0.0905  0.4943*  0.2329  -2.5749***  0.0972  0.0055  0.0082  -5.6508***  0.2595  

Vehicle-driver fixed effects           

Accident history           

Driving experience           

Calendar year-month fixed effects           

Vehicle owner type           

N 230,569,823 23,055,644 207,514,179 54,922,255 54,922,255 

Mean of dependent variable (bps) 7.5107  5.8029  7.7004  0.0259  13.9208  

��� − ∑ ��
��
��� /11

���� �� ��������� ��������
 

43.63%    47.84%    52.32%  

��,� = ∑ ����(�)��
��� + ���,� + ��,�  

��(�) is a 0-1 dummy variable indicating whether day � is in the �th month of the policy term (��� is omitted). In columns 1, 2, 

and 3, the dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder � had an accident on day �; ��,� = 0 otherwise. In 
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column 4, the dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder � had an exogenous accident on day �; ��,� = 0 

otherwise. The exogenous accidents include natural disasters, explosions, fires, and thefts. These exogenous accidents are out of the 

drivers’ control, and thus the probability of such accidents should not be elevated in the last month by the sunk cost fallacy. The 

sample for column 4 includes only individual policyholders with coverage for these exogenous accidents. The sample for column 5 

is the same as that for column 4 but the dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder � had a non-exogenous 

accident on day �; ��,� = 0 otherwise. Standard errors are clustered by vehicle-driver. * denotes significance at a 5% level. ** 

denotes significance at a 1% level. *** denotes significance at a 0.1% level. 
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Table 3. Evidence of reducing loss-prevention effort in the last month  

 Column 1: Accidents 

with collisions 

Column 2: Accidents 

with bodily injuries 

Column 3: Accidents with 

settlements > RMB 10,000 

Column 4: Policyholders with no 

accidents in previous 3 years 

 Est. S. E. Est. S. E. Est. S. E.          Est.           S. E. 

�� -2.9664***  0.1357  -0.0653** 0.0208  -0.3120***  0.0529  -0.3057  0.2086  

��  -3.3129***  0.1267  -0.0571**  0.0196  -0.3427***  0.0494  -0.6809***  0.2005  

��  -3.4903***  0.1192  -0.0675***  0.0185  -0.3908***  0.0459  -0.7707***  0.1937  

��  -3.3038***  0.1131  -0.0524**  0.0184  -0.3651***  0.0435  -1.0608***  0.1888  

��  -3.1810***  0.1088  -0.0596***  0.0174  -0.3301***  0.0419  -1.0823***  0.1847  

�� -3.1013***  0.1045  -0.0447**  0.0170  -0.2885***  0.0398  -1.3406***  0.1791  

��  -2.9707***  0.1016  -0.0537***  0.0165  -0.3129***  0.0378  -1.2534***  0.1798  

��  -2.7978***  0.0988  -0.0346*  0.0162  -0.2353***  0.0370  -1.3662***  0.1775  

�� -2.7304***  0.0966  -0.0222  0.0160  -0.2789***  0.0355  -1.6026***  0.1735  

��� -2.4046***  0.0950  -0.0302*  0.0153  -0.2147***  0.0348  -1.5681***  0.1718  

��� -2.0001***  0.0930  -0.0371*  0.0146  -0.1305***  0.0341  -1.3200***  0.1685  

Vehicle-driver fixed effects         

Accident history         

Driving experience         

Calendar year-month fixed effects         

N 207,514,179  201,264,158 207,514,179  46,589,363  

Mean of dependent variable (bps) 7.3725  0.2111  1.2324  4.9043  

����∑ ��
��
��� /��

���� �� ��������� ��������
  

39.78%  22.58%  23.62%  22.90%  

��,� = ∑ ����(�)��
��� + ���,� + ��,�  

��(�) is a 0-1 dummy variable indicating whether day � is in the �th month of the policy term (��� is omitted). In column 1, the 

dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder � had an accident on day � that involves collisions; ��,� = 0 

otherwise. In column 2, the dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder � had an accident with bodily 

injuries on day �; ��,� = 0 otherwise. In column 3, the dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder � had 
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an accident on day � with a settlement amount higher than RMB 10,000; ��,� = 0 otherwise. The sample for columns 1, 2, and 3 

includes all the policies for individual-owned vehicles. These three columns only differ in the definition of dependent variables. The 

numbers of observations in these three columns are slightly different from each other because the three dependent variables have 

some missing values on different observations. In column 4, the dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder 

� had an accident on day �; ��,� = 0 otherwise. The sample for column 4 includes the policies of which the policyholders had no 

accident in the previous three or more years. Standard errors are clustered by vehicle-driver. * denotes significance at a 5% level. ** 

denotes significance at a 1% level. *** denotes significance at a 0.1% level. 
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Table 4. Payments and accident severity 

 Column 1: Payments 

conditional on an 

accident 

Column 2: Unconditional 

payments 

Column 3: Bodily injury 

probability conditional 

on an accident 

 Est. S. E. Est. S. E. Est. S. E. 

�� 406.83*  173.32  -2.1331***  0.2367  0.0049**  0.0016  

��  502.28**  174.83  -2.2567***  0.2218  0.0075***  0.0017  

��  853.22***  200.53  -2.0669***  0.2257  0.0052**  0.0017  

��  1052.78***  206.40  -1.7395***  0.2092  0.0075***  0.0018  

��  831.50***  211.93  -1.8500***  0.2194  0.0060***  0.0018  

�� 941.74***  209.45  -1.6538***  0.2048  0.0072***  0.0019  

��  771.39***  199.16  -1.6825***  0.1942  0.0063***  0.0019  

��  912.42***  209.05  -1.5073***  0.1822  0.0092***  0.0019  

�� 997.95***  220.53  -1.3864***  0.1885  0.0110***  0.0020  

��� 799.35***  197.57  -1.2713***  0.1711  0.0076***  0.0019  

��� 790.56***  200.99  -0.8824***  0.1710  0.0038*  0.0019  

N 176,985  207,514,179  170,528  

Mean of dependent variable 6477.00 (RMB)  5.0539 (RMB)  0.0292  

The regressions in columns 1 and 3 are based on the accident-level data. Each observation is an 

accident. �� is a 0-1 dummy variable indicating whether the accident occurs in the �th month 

of the policy term (��� is omitted). The dependent variable in column 1 is the payment by the 

insurance company for the accident; the dependent variable in column 3 is a 0-1 indicator of 

whether the accident causes bodily injuries. The regression in column 2 is based on the 

driver-day-level data. Each observation is a driver-day combination. ��  is a 0-1 dummy 

variable indicating whether the day of the observation is in the �th month of the policy term 

(��� is omitted). The regression is the same as that in column 3 of Table 2 except that the 

dependent variable is the unconditional payment instead of the accident indicator. For a 

driver-day with an accident, the dependent variable equals the payment made by the insurance 

company for the accident; for a driver-day without an accident, the dependent variable equals 0. 

Standard errors are clustered by vehicle-driver. * denotes significance at a 5% level. ** denotes 

significance at a 1% level. *** denotes significance at a 0.1% level. 
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Table 5. Regression discontinuity 
 

Panel A: Degree of polynomial = 3 

RD window [-29, 30] [-59, 60] [-89, 90] [-119, 120] [-179, 180] 

�� 9.3769*** 

(0.9146) 

8.9925*** 

(0.6529) 

9.1058*** 

(0.5336) 

8.8131*** 

(0.4599) 

8.0823*** 

(0.3702) 

N 8,897,940 17,795,880 26,693,820 35,591,760 53,387,640 

      

Panel B: RD window = [-89, 90] 

Degree of polynomial 1 2 3 4 5 

�� 5.9974*** 

(0.2563) 

8.2513*** 

(0.3960) 

9.1058*** 

(0.5336) 

9.1038*** 

(0.6649) 

9.0119*** 

(0.7915) 

N 26,693,820 26,693,820 26,693,820 26,693,820 26,693,820 

 

��,� = �� + ���(� ≤ 0) + �(�) + ��� + ��,�,       � ∈ [−(�̅ − 1), �̅] 

��,� is the accident indicator (rescaled to 10,000 bps) on the �th day in vehicle-driver-window 

�. Each RD window consists of two adjacent policy cycles for a driver. � = 0 for the last day 

of the preceding policy term, � = −1 for the day before the last day of the policy term, � = 1 

for the first day of the succeeding policy term, � = 2 for the second day of the succeeding 

policy term, and so on. �(� ≤ 0) is a 0-1 indicator of whether the day is in the preceding policy 

part of the RD window. �(�) is a flexible polynomial of �, allowing the coefficients of each 

term in the polynomial to be different between the domain where � ≤ 0 and the domain where 

� > 0. In ��, we control for vehicle-driver-window fixed effects and calendar-month fixed 

effects. In panel A, we set the degree of the polynomial �(�) equal to 3 and alter the RD 

window bandwidth by changing �̅ from 30 days to 180 days. In panel B, we set �̅ = 90 and 

change the degree of the polynomial �(�) from 1 to 5. Standard errors in parentheses are 

clustered by vehicle-driver-window. * denotes significance at a 5% level. ** denotes significance 

at a 1% level. *** denotes significance at a 0.1% level. 
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Table 6. The effect of accident history on premium 

 Est. S. E. 

No accident for 3 or more years -1549.4746***  77.8710  

No accident for 2 years  -1529.6489***  77.9183  

No accident for 1 year  -1406.6199***  77.8803  

New driver -914.6440***  77.9972  

1 accident last term -843.2802***  78.0493  

2 accidents last term -471.1739***  84.9891  

Policyholder age   

Seat number   

Vehicle age   

Driving experience   

City fixed effects   

Calendar year-month fixed effects   

Gender   

Coverage   

Vehicle model fixed effects   

   

Each observation is a policy. The sample includes all the individual policyholders with 

non-missing accident history categories. Policyholders in the category of “3 or more accidents 

last term” are omitted. The dependent variable is the premium of the policy. * denotes 

significance at a 5% level. ** denotes significance at a 1% level. *** denotes significance at a 

0.1% level. 
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Table 7. Estimated average next-term premium increase caused by an accident in the current term 
 

Accident history for current 

term 

Percentage 

of the 

sample 

Accident history for next term if 

no accident in current term 

Accident history for 

next term if 1 

accident in current 

term 

Premium increase next 

term relative to current 

term if 1 accident in 

current term 

Premium increase 

next  term caused 

by 1 accident in 

current term 

No accident for 3 or more years 29.43% No accident for 3 or more years  1 accident last year RMB 706.19 RMB 706.19  

No accident for 2 years  14.04% No accident for 3 or more years 1 accident last year RMB 686.37 RMB 706.19  

No accident for 1 year  20.23% No accident for 2 years  1 accident last year RMB 563.34 RMB 686.37  

New driver 27.04% No accident for 1 year  1 accident last year RMB 71.36 RMB 563.34  

1 accident last year 8.71% No accident for 1 year 1 accident last year RMB 0 RMB 563.34  

2 accidents last year 0.43% No accident for 1 year 1 accident last year RMB -372.11 RMB 563.34  

3 or more accidents last year 0.12% No accident for 1 year 1 accident last year RMB -842.28 RMB 563.34  

For each category of accident history for the current policy term, the last column reports the average premium difference in the next term 

between the case in which the driver encounters one accident in the current term and the case in which the driver does not encounter any accident 

in the current term; the penultimate column reports the average premium increase in the next term relative to the current term if one accident 

occurs in the current term. 
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Table 8. The sunk cost fallacy effects across policyholders with different accident histories 

 Column 1:  Column 2:  

 Est. S. E. Est. S. E. 

No accident for 3 or more years 7.1352***  0.3819  7.0488***  0.3819  

No accident for 2 years  7.3551***  0.3841  7.2233***  0.3844  

No accident for 1 year  8.0767***  0.3832  7.8518***  0.3833  

New driver 9.6021***  0.3825  9.4939***  0.3829  

1 accident last term 11.5609***  0.3933  11.2942***  0.3941  

2 accidents last term 16.6820***  0.4850  16.0811***  0.4892  

3 or more accidents last term 20.5119***  1.2701  19.9292***  1.2771  

Last-month indicator 3.0420***  0.0839  1.6422***  0.0487  

Last-month indicator interacted with:     

No accident for 3 or more years   0.8670***  0.1347  

No accident for 2 years    1.3208***  0.2107  

No accident for 1 year    2.2708***  0.1947  

New driver   1.0886***  0.1704  

1 accident last term   2.7085***  0.3460  

2 accidents last term   6.1488***  1.0103  

3 or more accidents last term   5.8909  3.9419  

Policyholder age     

Seat number     

Vehicle age     

Driving experience     

City fixed effects     

Calendar year-month fixed effects     

Gender     

Vehicle model fixed effects     

N 195,156,433  195,156,433  

Mean of dependent variable 8.1412  8.1412  

Each observation is a policyholder-day combination. The dependent variable ��,� = 1 (rescaled 

to 10,000 bps) if policyholder �  had an accident on day � ; ��,� = 0  otherwise. The 

policyholders with missing accident history categories are omitted. Standard errors are clustered 

by vehicle-driver. * denotes significance at a 5% level. ** denotes significance at a 1% level. *** 

denotes significance at a 0.1% level. 
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Table 9. Sunk cost fallacy vs. rational behavior 

 Column 1: Policies with per-accident 

coverage limits only  

Column 2: In days after 

proceeds surpassed 

premium 

Column 3:  Polices with 

annual coverage limits  

Column 4: In days after 

proceeds surpassed 

premium 

 Est. S. E. Est. S. E. Est. S. E. Est. S. E. 

�� -0.2904*  0.1139  3.0276  6.4278  -6.5415***  0.2601  6.0707  5.2439  

��  -0.3556***  0.1024  4.7594  4.8662  -7.0269***  0.2433  -4.5197  3.0403  

��  -0.4549***  0.0960  -0.8577  3.9224  -7.2083***  0.2316  -11.1474***  2.3073  

��  -0.3532***  0.0926  2.5874  3.5425  -6.9516***  0.2240  -9.2637***  1.9917  

��  -0.2238*  0.0897  1.6388  3.0393  -6.8751***  0.2185  -11.5915***  1.7147  

�� -0.3169***  0.0846  1.1345  2.6250  -6.7099***  0.2116  -9.7758***  1.5379  

��  -0.2788***  0.0813  1.7169  2.2351  -6.5986***  0.2063  -10.5570***  1.3797  

��  -0.3007***  0.0776  1.4973  1.8578  -6.3629***  0.1998  -8.8228***  1.2507  

�� -0.3213***  0.0735  1.0779  1.5323  -6.3118***  0.1948  -11.5496***  1.1121  

��� -0.1535*  0.0713  1.3763  1.2428  -5.9283***  0.1902  -10.4157***  0.9970  

��� -0.1736**  0.0674  1.0881  0.9788  -4.9294***  0.1869  -7.7835***  0.8981  

Vehicle-driver fixed effects         

Accident history         

Driving experience         

Calendar year-month fixed effects         

N 106,587,615  1,548,080  100,926,564  5,574,873  

Mean of dependent variable (bps) 2.2806  10.1933  13.4243  30.1280  

��,� = ∑ ����(�)��
��� + ���,� + ��,�  

In column 1, the sample includes individual policyholders with per-accident coverage limits only. In column 2, the sample includes 

the same policyholders as column 1 but only includes the observations in the days after the cumulative settlement proceeds within 

the policy term surpassed the premium. In column 3, the sample includes policyholders with both per-accident coverage limits and 

annual coverage limits. In column 4, the sample includes the same policyholders as column 3 but only includes the observations in 
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the days after the cumulative settlement proceeds within the policy term surpassed the premium. In these four columns, the 

dependent variable ��,� = 1 (rescaled to 10,000 bps) if policyholder � had an accident on day �; ��,� = 0 otherwise. ��(�) is a 

0-1 dummy variable indicating whether day �  is in the � th month of the policy term. Standard errors are clustered by 

vehicle-driver. * denotes significance at a 5% level. ** denotes significance at a 1% level. *** denotes significance at a 0.1% level.
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Table 10. Percentage of accidents due to the sunk cost fallacy 

Degree of polynomial (�) With per-accident coverage 

limits only 

With both per-accident and 

annual coverage limits 

0 2.56% 6.53% 

1 2.07% 5.70% 

2 2.00% 3.91% 
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Online Appendix 

 

 

 

 

Figure C.1. Histogram of policy cycles per driver 
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Figure C.2. Histogram of calendar months in which policies started 
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Table C.1. Baseline results: Linear terms for driving experience 

 Column 1:  

All car owners 

Column 2:  

Company or 

government owners 

Column 3:  

Individual owners 

Column 4: 

Exogenous 

accidents 

Column 5: 

Non-exogenous 

accidents 

 Est. S. E. Est. S. E. Est. S. E. Est. S. E. Est. S. E. 

�� -2.5841***  0.1112  -0.1861  0.2730  -2.8536***  0.1200  0.0073  0.0104  -5.6808***  0.3208  

��  -3.0947***  0.1077  0.3847  0.2710  -3.4795***  0.1160  0.0086  0.0103  -7.1564***  0.3092  

��  -3.5079***  0.1047  -0.2241  0.2602  -3.8681***  0.1128  0.0097  0.0116  -7.7020***  0.3026  

��  -3.4667***  0.1024  0.1368  0.2586  -3.8618***  0.1102  0.0026  0.0104  -7.8523***  0.2936  

��  -3.4904***  0.1003  -0.0732  0.2535  -3.8663***  0.1079  0.0014  0.0093  -8.0685***  0.2865  

�� -3.5015***  0.0979  -0.1521  0.2476  -3.8734***  0.1053  -0.0021  0.0089  -7.9271***  0.2805  

��  -3.3951***  0.0963  0.2149  0.2488  -3.7962***  0.1034  -0.0076  0.0084  -7.9101***  0.2739  

��  -3.2156***  0.0946  0.6615**  0.2504  -3.6460***  0.1014  -0.0002  0.0088  -7.8644***  0.2674  

�� -3.2148***  0.0929  -0.0100  0.2404  -3.5645***  0.0998  0.0097  0.0104  -7.3994***  0.2650  

��� -2.8720***  0.0918  0.2015  0.2372  -3.2028***  0.0985  -0.0072  0.0085  -6.9490***  0.2620  

��� -2.3133***  0.0904  0.4983*  0.2328  -2.6206***  0.0971  0.0033  0.0084  -5.8204***  0.2589  

Additional driving experience (months) 

× new-driver indicator  
-0.2566***  0.0145  -0.0371  0.0369  -0.2755***  0.0156  -0.0039  0.0024  -0.3328***  0.0709  

Additional driving experience (months) 

× experienced-driver indicator  
0.0235*  0.0102  0.0009  0.0253  0.0275*  0.0109  -0.0017  0.0022  0.0481  0.0671  

No accident for 3 or more years 8.1430***  1.7951  6.1452**  2.3557  8.5041***  2.1954  0.0106  0.0085  43.2918***  1.3796  

No accident for 2 years  5.9866***  1.7916  4.9324*  2.3378  6.2379**  2.1920  0.0207  0.0134  37.2521***  1.3519  

No accident for 1 year  3.9720*  1.7894  2.7729  2.3371  4.2194  2.1892  0.0006  0.0054  31.4800***  1.3390  

New driver 7.7477***  1.7956  3.6717  2.3671  8.2431***  2.1947  0.0019  0.0170  32.1807***  1.3910  

1 accident last term -4.2633*  1.7967  -5.4658*  2.3716  -4.0127  2.1966  0.0085  0.0121  21.9184***  1.3543  

2 accidents last term -11.0734*** 1.8616  -18.8146*** 2.9274  -10.3181*** 2.2536  0.0042  0.0072  11.3860***  1.4263  

3 or more accidents last term -3.0412  2.7247  -5.8066*  2.3726  -2.7720  3.0051  -- -- -- -- 

Vehicle-driver fixed effects           

Calendar year-month fixed effects           



85 
 

Vehicle owner type           

N 230,569,823  23,055,644  207,514,179  54,922,255 54,922,255  

           

��,� = ∑ ����(�)��
��� + ���,� + ��,�  

This table is another version of Table 2 in which we only control for linear trends in the effects of additional months of driving 

experience on new drivers (first-year drivers) and experienced drivers (with more than one year of driving experience), respectively, 

and do not control for the nonlinear trends, to better illustrate the effect of driving experience. The results indicate that additional 

months of driving experience are helpful for new drivers but are not for experienced drivers. The estimates of �� are similar to 

those in Table 2. This table also reports the estimates for accident history categories. In contrast to Table 8 in which vehicle-driver 

fixed effects are not controlled for and the coefficients show that better accident histories lead to lower accident probabilities for the 

current policy, after controlling for vehicle-driver fixed effects, the variation in accident histories becomes within a vehicle-driver 

and there is no pattern that, within a vehicle-driver, a better accident history leads to lower accident probabilities for the current 

policy. There is even a rough pattern that, within a vehicle-driver, a worse accident history leads to lower accident probabilities for 

the current policy. One possible explanation is that it is a phenomenon of mean reversion. Another possible explanation is that, after 

accidents, drivers become more aware of the risk or more risk averse and then drive more cautiously. Shum and Xin (2020) found 

that drivers drive more conservatively following “near-miss” accidents (measured by hard brakes or hard turns). In columns 1, 2, and 

3, policyholders with missing accident histories in the sample (approximately 13%) are omitted. In columns 4 and 5, policyholders 

with 3 or more accidents in the previous term are omitted because, in that sample, no policyholders’ accident histories are missing. 

Standard errors are clustered by vehicle-driver. * denotes significance at a 5% level. ** denotes significance at a 1% level. *** 

denotes significance at a 0.1% level. 
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Table C.2. Evidence of reducing loss-prevention effort in the last month: Linear terms for driving experience  

 Column 1: Accidents 

with collisions 

Column 2: Accidents 

with bodily injuries 

Column 3: Accidents with 

settlements > RMB 10,000 

Column 4: Policyholders with no 

accidents in previous 3 years 

 Est. S. E. Est. S. E. Est. S. E.          Est.           S. E. 

�� -2.0762***  0.1166  -0.0270  0.0183  -0.2446***  0.0450  -0.5160**  0.1921  

��  -2.6750***  0.1124  -0.0267  0.0179  -0.2906***  0.0428  -0.8721***  0.1891  

��  -3.0589***  0.1092  -0.0440**  0.0170  -0.3516***  0.0411  -0.9419***  0.1867  

��  -3.0373***  0.1065  -0.0346*  0.0171  -0.3366***  0.0399  -1.2118***  0.1843  

��  -3.0417***  0.1043  -0.0465**  0.0163  -0.3104***  0.0393  -1.2129***  0.1819  

�� -3.0554***  0.1016  -0.0354*  0.0162  -0.2756***  0.0379  -1.4510***  0.1777  

��  -2.9883***  0.0996  -0.0475**  0.0160  -0.3053***  0.0364  -1.3442***  0.1788  

��  -2.8525***  0.0976  -0.0308*  0.0159  -0.2315***  0.0361  -1.4377***  0.1769  

�� -2.7993***  0.0959  -0.0200  0.0157  -0.2777***  0.0349  -1.6557***  0.1732  

��� -2.4680***  0.0947  -0.0292*  0.0152  -0.2149***  0.0345  -1.6036***  0.1717  

��� -2.0411***  0.0929  -0.0368*  0.0146  -0.1310***  0.0340  -1.3390***  0.1685  

Additional driving experience (months) 

× new-driver indicator  
-0.2951***  0.0155  -0.0033  0.0028  -0.0427***  0.0072  -- -- 

Additional driving experience (months) 

× experienced-driver indicator  
0.0261*  0.0109  0.0014  0.0022  0.0021  0.0052  0.0083  0.0155  

No accident for 3 or more years 8.5855***  2.1942  0.4756**  0.1444  1.6906**  0.5484  -- -- 

No accident for 2 years  6.2580**  2.1907  0.3499*  0.1418  1.3277*  0.5455  -- -- 

No accident for 1 year  4.1420  2.1880  0.2173  0.1409  1.0427  0.5437  -- -- 

New driver 8.3292***  2.1934  0.1682  0.1420  1.5821**  0.5484  -- -- 

1 accident last term -4.2565  2.1954  -0.0625  0.1414  -0.3074  0.5493  -- -- 

2 accidents last term -10.5268***  2.2526  -0.3267  0.1768  -3.2650***  0.6323  -- -- 

3 or more accidents last term -2.6797  3.0108  0.0200  0.2533  -0.9728  1.4615  -- -- 

Vehicle-driver fixed effects         

Calendar year-month fixed effects         

N 207,514,179  201,264,158 207,514,179  46,589,363  
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��,� = ∑ ����(�)��
��� + ���,� + ��,�  

This table is another version of Table 3 in which we only control for linear trends in the effects of additional months of driving 

experience on new drivers (first-year drivers) and experienced drivers (with more than one year of driving experience), respectively, 

and do not control for the nonlinear trends, to better illustrate the effect of driving experience. The results indicate that additional 

months of driving experience are helpful for new drivers but are not for experienced drivers. The estimates of �� are similar to 

those in Table 3. This table also reports the estimates for accident history categories. In columns 1, 2, and 3, policyholders with 

missing accident histories in the sample (approximately 13%) are omitted. Standard errors are clustered by vehicle-driver. * denotes 

significance at a 5% level. ** denotes significance at a 1% level. *** denotes significance at a 0.1% level. 
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Table C.3. Baseline results: Monthly-level regressions 

 Column 1:  

All car owners 

Column 2:  

Company or 

government owners 

Column 3:  

Individual owners 

Column 4: 

Exogenous 

accidents 

Column 5: 

Non-exogenous accidents 

 Est. S. E. Est. S. E. Est. S. E. Est. S. E. Est. S. E. 

�� -99.4315***  3.8969  -0.0422  9.7414  -111.8556***  4.2053 0.1284  0.3810  -215.5323***  10.7622  

��  -108.1219***  3.6392  15.3520  9.1105  -123.0253***  3.9258 0.2883  0.3541  -239.5314***  9.9708  

��  -115.0794***  3.4258  -3.9309  8.4953  -128.4798***  3.6965 0.4401  0.3898  -241.2067***  9.5963  

��  -109.9728***  3.2574  5.6599  8.1630  -123.7598***  3.5118 0.2921  0.3374  -236.0795***  9.2323  

��  -107.2596***  3.1360  -0.6145  7.9161  -119.9726***  3.3784 0.2675  0.2914  -235.5178***  9.0140  

�� -105.2416***  3.0205  -3.4523  7.6553  -117.3331***  3.2515 0.1706  0.2729  -226.9166***  8.7857  

��  -100.6707***  2.9462  6.2813  7.6136  -113.2595***  3.1659 -0.0230  0.2582  -225.0619***  8.5501  

��  -94.6344***  2.8742  19.7305*  7.6093  -107.8677***  3.0818 0.1759  0.2776  -224.1031***  8.2611  

�� -94.2809***  2.8139  0.8248  7.3009  -104.9858***  3.0213 0.4256  0.3233  -211.8080***  8.1005  

��� -84.1341***  2.7691  6.1173  7.1727  -94.1015***  2.9724 -0.1292  0.2595  -200.6317***  7.9372  

��� -68.3609***  2.7286  15.2583*  7.0220  -77.6139***  2.9293 0.1377  0.2519  -170.5372***  7.8024  

Vehicle-driver fixed effects           

Accident history           

Driving experience           

Calendar year-month fixed effects           

Vehicle owner type           

N 7,570,296  757,032  6,813,264  1,804,080  1,804,080  

Mean of dependent variable (bps) 224.8190  174.3864  230.4226  0.7797  415.9839  

��� − ∑ ��
��
��� /11

���� �� ��������� ��������
 

43.96%    48.22%    53.04%  

��,� = ∑ ����(�)��
��� + ���,� + ��,�  

This table is the monthly version of Table 2. ��(�) is a 0-1 dummy variable indicating whether month � is in the �th month of 

the one-year policy cycle (��� is omitted). In columns 1, 2, and 3, the dependent variable ��,� is the number of accidents that 
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occurred within the �th month since the first contract of the policyholder started (rescaled to 10,000 bps for each accident). In 

column 4, the dependent variable ��,� is the number of exogenous accidents that occurred within month � (rescaled to 10,000 bps 

for each accident). The exogenous accidents include natural disasters, explosions, fires, and thefts. These exogenous accidents are 

out of the drivers’ control, and thus the probability of such accidents should not be elevated in the last month by the sunk cost fallacy. 

The sample for column 4 includes only individual policyholders with coverage for these exogenous accidents. The sample for 

column 5 is the same as that for column 4 but the dependent variable ��,� is the number of non-exogenous accidents that occurred 

within month � (rescaled to 10,000 bps for each accident). In the monthly regressions, each of the first eleven months of a policy 

term has 30 days; the remaining days of the policy term are assigned to the last month. Consequently, the last month can have more 

than 30 days (mostly 35 days). Correspondingly, to avoid exaggerating the number of accidents that occur in the last month, we 

rescale the dependent variable for the last month of a policy term by dividing it by the number of days assigned to the last month and 

multiplying by 30. Because a contract can start in the middle of a calendar month, month � can cross two calendar months; 

correspondingly, the calendar year-month fixed effect represents the calendar year-month in which month � starts. Standard errors 

are clustered by vehicle-driver. * denotes significance at a 5% level. ** denotes significance at a 1% level. *** denotes significance 

at a 0.1% level. 
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Table C.4. Evidence of reducing loss-prevention effort in the last month: Monthly-level regressions  

 Column 1: Accidents 

with collisions 

Column 2: Accidents 

with bodily injuries 

Column 3: Accidents with 

settlements > RMB 10,000 

Column 4: Policyholders with no 

accidents in previous 3 years 

 Est. S. E. Est. S. E. Est. S. E.          Est.           S. E. 

�� -89.3537***  4.0778  -1.8984**  0.6264  -9.3945***  1.5916  -8.4954  6.2614  

��  -99.7649***  3.8034  -1.6444**  0.5898  -10.2740***  1.4856  -20.2163***  6.0189  

��  -105.0636***  3.5778  -1.9871***  0.5566  -11.7522***  1.3818  -22.8680***  5.8123  

��  -99.8313***  3.3934  -1.5200**  0.5518  -10.9988***  1.3073  -31.8973***  5.6675  

��  -95.9736***  3.2631  -1.7724***  0.5214  -9.9894***  1.2577  -32.3561***  5.5469  

�� -93.3912***  3.1366  -1.3078**  0.5089  -8.6960***  1.1947  -39.7767***  5.3799  

��  -89.5106***  3.0490  -1.5821***  0.4950  -9.4393***  1.1371  -37.6694***  5.3989  

��  -84.3599***  2.9670  -1.0004*  0.4862  -7.0726***  1.1126  -41.0367***  5.3306  

�� -82.2101***  2.9032  -0.6620  0.4776  -8.4000***  1.0668  -48.4584***  5.2123  

��� -72.1430***  2.8556  -0.8658  0.4587  -6.3983***  1.0463  -46.9684***  5.1642  

��� -60.1411***  2.8024  -1.0976*  0.4392  -3.8705***  1.0261  -40.1324***  5.0895  

Vehicle-driver fixed effects         

Accident history         

Driving experience         

Calendar year-month fixed effects         

N 6,813,264  6,608,028  6,813,264  1,530,264  

Mean of dependent variable (bps) 220.8518  6.3382  32.1900  146.6668  

����∑ ��
��
��� /��

���� �� ��������� ��������
  

39.99%  22.00%  27.19%  22.93%  

��,� = ∑ ����(�)��
��� + ���,� + ��,�  

This table is the monthly version of Table 3. ��(�) is a 0-1 dummy variable indicating whether month � is in the �th month of 

the one-year policy cycle (��� is omitted). In column 1, the dependent variable ��,� is the number of accidents that occurred within 

the �th month since the start of the policyholder’s first contract and involved collisions (rescaled to 10,000 bps for each accident). In 
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column 2, the dependent variable ��,� is the number of accidents with bodily injuries that occurred within month � (rescaled to 

10,000 bps for each accident). In column 3, the dependent variable ��,� is the number of accidents that occurred within month � 

and incurred a settlement amount higher than RMB 10,000 (rescaled to 10,000 bps for each accident). The sample for columns 1, 2, 

and 3 includes all the policies for individual-owned vehicles. These three columns only differ in the definition of dependent variables. 

The numbers of observations in these three columns are slightly different from each other because the three dependent variables have 

some missing values on different observations. The sample for column 4 includes the policies of which the policyholders had no 

accident in the previous three or more years. The dependent variable ��,� is the number of accidents that occurred within month � 

(rescaled to 10,000 bps for each accident). Standard errors are clustered by vehicle-driver. * denotes significance at a 5% level. ** 

denotes significance at a 1% level. *** denotes significance at a 0.1% level. 
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Table C.5. Alternative specification for the bodily-injury regression 

 

In Table 3, the number of observations for column 2 (bodily injuries) is slightly smaller than that 

for column 1. The reason is that, for a small proportion of policyholders (approximately 3%), if 

an accident occurs, we do not know whether it caused bodily injuries or not. Therefore, we 

exclude these policyholders from the regression in column 2 of Table 3. The average daily 

accident probability for this excluded group is 8.7973 bps, which is not very different from that 

for all the individual vehicle owners (7.7004 bps in column 3 of Table 2). Alternatively, in this 

table, we include these policyholders in the regression and set the dependent variable for them 

always equal to zero (i.e., assume that all the accidents encountered by these policyholders did 

not cause bodily injuries). The results are robust. Standard errors are clustered by vehicle-driver. 

* denotes significance at a 5% level. ** denotes significance at a 1% level. *** denotes 

significance at a 0.1% level. 

 

 

 

 

 

  

 Est. S. E. 

�� -0.0812*** 0.0202 

��  -0.0722*** 0.0190 

��  -0.0811*** 0.0180 

��  -0.0652*** 0.0178 

��  -0.0708*** 0.0168 

�� -0.0547*** 0.0164 

��  -0.0617*** 0.0160 

��  -0.0415** 0.0157 

�� -0.0276 0.0155 

��� -0.0335* 0.0148 

��� -0.0383** 0.0142 

Vehicle-driver fixed effects   

Accident history   

Driving experience   

Calendar year-month fixed effects   

N 207,514,179  

Mean of dependent variable (bps) 0.2047  

��� − ∑ ��
��
��� /11

���� �� ��������� ��������
 

27.88%  
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Table C.6. Payments conditional on an accident 

 Column 1:  

All individual drivers 

Column 2:  

New individual drivers 

Column 3:  

Experienced individual 

drivers 

 Est. S. E. Est. S. E. Est. S. E. 

�� 919.83***  170.90  874.03**  301.07  1054.95***  201.52  

��  933.84***  171.94  659.75*  291.34  1215.83***  213.99  

��  1194.04***  198.01  1094.79**  341.05  1312.17***  240.98  

��  1452.08***  203.33  1754.13***  383.21  1291.71***  218.60  

��  1168.84***  208.70  1183.93**  379.87  1188.77***  241.41  

�� 1248.34***  206.47  1079.96**  349.34  1396.28***  255.81  

��  1111.65***  195.13  1164.69***  339.11  1102.55***  235.86  

��  1183.12***  205.24  1341.87***  369.62  1099.11***  241.86  

�� 1219.99***  217.27  1211.14***  354.67  1244.28***  275.73  

��� 992.24***  193.14  949.77**  347.73  1027.87***  227.69  

��� 976.44***  196.84  831.43*  345.13  1066.33***  237.53  

Premium 1.0979***  0.0383   1.0559***  0.0623   1.1713***  0.0495   

N 176,985  71,587  105,398  

       

This table reports alternative specifications for the regression in column 1 of Table 4. Each 

observation is an accident. The dependent variable is the payment by the insurance company for 

the accident. Compared to column 1 of Table 4, column 1 of this table adds the variable premium 

to the regression; column 2 restricts the regression sample to new drivers (first-year drivers); 

column 3 restricts the regression sample to experienced drivers (with more than one year of 

driving experience). The results indicate that the lower coefficients for months 1 and 2 compared 

to months 3-11 in column 1 of Table 4 are driven by new drivers. A possible explanation is that 

new drivers in the first two months may be reluctant to drive on highways or at high speeds and 

hence the damage given an accident tends to be small, although new drivers are more likely to 

encounter an accident in the first two months, as suggested by Figure 1. Standard errors are 

clustered by vehicle-driver. * denotes significance at a 5% level. ** denotes significance at a 1% 

level. *** denotes significance at a 0.1% level. 
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Table C.7. Separate regressions by starting calendar months 

Starting calendar month: January February March 

 Est. S. E. Est. S. E. Est. S. E. 

�� -4.4479***  0.6435  -3.1332***  0.6600  -5.1028***  0.6245  

��  -5.0761***  0.7161  -3.7688***  0.7181  -5.3723***  0.7046  

��  -4.7525***  0.7714  -3.7305***  0.7521  -5.1821***  0.7273  

��  -4.2132***  0.8037  -3.6227***  0.7800  -4.7035***  0.7473  

��  -4.0517***  0.8305  -2.8022***  0.8047  -4.7881***  0.7622  

�� -4.0848***  0.8288  -3.2971***  0.8034  -4.5137***  0.7775  

��  -4.3080***  0.8130  -1.6695*  0.7992  -4.1332***  0.7808  

��  -3.7814***  0.7714  -1.4521 0.7779  -3.0426***  0.7671  

�� -2.7783***  0.6733  -1.1271  0.7267  -3.0980***  0.7442  

��� -2.1371***  0.5526  -1.4760*  0.6077  -3.2933***  0.6662  

��� -1.5361***  0.4291  -0.6169  0.4285  -1.3025*  0.5144  

Starting calendar month: April May June 

 Est. S. E. Est. S. E. Est. S. E. 

�� -3.6097***  0.6867  -4.5466***  0.6911  -3.1989***  0.7434  

��  -3.4720***  0.7407  -4.0062***  0.7482  -3.1542***  0.8011  

��  -3.4560***  0.7779  -3.9435***  0.7529  -3.2852***  0.7874  

��  -3.2376***  0.7710  -4.0476***  0.7651  -2.9846***  0.7739  

��  -2.5203***  0.7792  -3.8560***  0.7592  -2.8693***  0.7605  

�� -2.3770**  0.7914  -3.8791***  0.7638  -3.0475***  0.7432  

��  -2.6062***  0.8024  -3.5957***  0.7613  -2.5183***  0.7350  

��  -2.0920**  0.7916  -2.5835***  0.7517  -2.3351***  0.7264  

�� -1.8231*  0.7624  -2.5510***  0.7302  -2.1015**  0.7046  

��� -1.1273  0.7193  -2.3520***  0.6817  -1.5466*  0.6576  

��� -1.4000* 0.5859  -2.0360***  0.5745  -0.7699  0.5337  

Starting calendar month: July August September 

 Est. S. E. Est. S. E. Est. S. E. 

�� -4.3601***  0.7182  -3.1212***  0.7201  -4.5102***  0.7170  

��  -3.8776***  0.7976  -1.5971*  0.7975  -4.4215***  0.8176  

��  -3.1492***  0.8071  -2.1976**  0.8365  -4.7016***  0.8764  

��  -2.6532***  0.7900  -2.0716*  0.8146  -5.0615***  0.8783  

��  -2.9876***  0.7698  -1.9667*  0.7780  -4.7613***  0.8388  

�� -2.4050**  0.7592  -1.6923*  0.7564  -4.5769***  0.8046  

��  -2.5722***  0.7428  -1.6771*  0.7301  -4.2297***  0.7744  

��  -2.0719**  0.7219  -1.4036*  0.6936  -3.6702***  0.7316  

�� -2.2508***  0.6929  -1.4262*  0.6536  -3.4097***  0.6736  

��� -1.4259*  0.6378  -1.1929*  0.6014  -2.4850***  0.6144  

��� -1.6487***  0.5181  -0.8945  0.4995  -1.5678***  0.4846  



95 
 

       

Starting calendar month: October November December 

 Est. S. E. Est. S. E. Est. S. E. 

�� -2.3347***  0.6880  -3.9394***  0.6769  -5.1959***  0.6613  

��  -1.8552*  0.7656  -3.7947***  0.7512  -5.1156***  0.7390  

��  -2.7048***  0.7998  -3.3937***  0.7868  -4.4843***  0.7866  

��  -2.3530**  0.8185  -3.8009***  0.8048  -3.8469***  0.8118  

��  -1.8336*  0.8131  -3.7557***  0.8342  -4.2744***  0.8220  

�� -3.0010***  0.7669  -1.8980*  0.8161  -3.5616***  0.8330  

��  -2.5981***  0.7202  -2.0158**  0.7594  -3.2072***  0.8073  

��  -2.5029***  0.6809  -1.1893  0.6997  -2.8465***  0.7379  

�� -2.0416***  0.6296  -0.9338  0.6529  -2.3057***  0.6569  

��� -1.8238***  0.5647  -1.3885*  0.5712  -2.0480***  0.5832  

��� -1.9209***  0.4719  -1.4048**  0.4371  -1.3181**  0.4417  

For this table, the policies purchased by individual vehicle owners are divided into 12 groups by 

the calendar month in which the policy starts. The regression equation is the same as that for 

column 3 of Table 2 and is estimated separately for each group. Standard errors are clustered by 

vehicle-driver. * denotes significance at a 5% level. ** denotes significance at a 1% level. *** 

denotes significance at a 0.1% level. 

 

 

 

 


